

Edition N° 11, Vol. I – 04-10-2025

ISSN Print: 1646-9976 | ISSN Online: 2184-223X |

http://www.kriativ-tech.com

DOI: 10.31112/kriativ-tech-2023-06-103

The Impact of 5G Technology on the Internet of Things and Society

Tiago Dias
ISTEC Lisboa – tiagofonseca.dias@my.istec.pt.

Paulo Duarte Branco
Associate Professor at ISTEC Lisboa, CIAC-PLDIS – paulo.duarte@my.istec.pt

José Pereira Reis
Invited Assistant Professor at ISCTE- josevicente.reis@my.istec.pt

Abstract: The Internet of Things (IoT) and fifthgeneration mobile networks (5G) represent two of the most transformative technologies of the 21st century. When integrated, they offer a synergistic foundation for advanced applications in numerous fields, from healthcare to transportation, agriculture, industry, and smart urban infrastructure. IoT enables devices to sense, transmit, and act on data autonomously, while 5G provides the ultra-fast, ultra-reliable, and highcapacity network environment these devices require to function at scale. The confluence of these technologies is driving the emergence of interconnected ecosystems that are reshaping business models, service delivery, and public life. This paper explores the impact of 5G on IoT, assesses their combined influence on society, and discusses both the technological advantages and the risks—particularly in terms of security, privacy, and ethical concerns. Through an in-depth examination of their architectures, capabilities, limitations, and real-world deployments, we conclude that the integration of 5G and IoT holds tremendous potential to revolutionize daily life, but achieving this promise will depend on addressing foundational challenges in regulation, trust, and inclusivity. We evaluate how 5G and IoT together are redefining the digital landscape, while also identifying key challenges that must be addressed for their widespread and sustainable adoption.

Keywords: 5G, Internet of Things, security architecture, data ethics, regulatory frameworks, distributed systems, edge computing, trust management

I. Introduction

The emergence of fifth-generation (5G) wireless technology represents a paradigmatic shift in telecommunications infrastructure, promising unprecedented capabilities that extend far beyond mere improvements in mobile connectivity (Batool et al., 2021). This technological revolution coincides with the rapid expansion of the Internet of Things (IoT), creating a synergistic relationship that has the potential to transform multiple sectors of society (Banik et al., 2019). The convergence of these technologies presents both extraordinary opportunities and significant challenges that warrant comprehensive academic examination.

The Internet of Things has evolved from a conceptual framework into a tangible reality, with billions of connected devices generating vast amounts of data across diverse applications ranging from smart homes to industrial automation (Kar et al., 2021). However, the full potential of IoT has been constrained by the limitations of

existing network infrastructure, particularly in terms of latency, bandwidth, and device density support. The advent of 5G technology promises to address these fundamental limitations while introducing new paradigms for connectivity and data processing.

This analysis examines the multifaceted impact of 5G technology on IoT systems and broader societal structures. By synthesizing research and technological current developments, the research explores how 5G capabilities enhance **IoT** applications, transform industrial processes, and reshape simultaneously social interactions while addressing the security, privacy, and ethical considerations that emerge from technological convergence.

II. Evolution of Mobile Network Technologies

The evolution of mobile communication networks from first-generation (1G) analog systems to the current 5G infrastructure represents one of the most significant technological progressions of the modern era (Muppavaram et al., 2023). Each generational brought advancement has exponential improvements in data transmission capabilities, network efficiency, and application possibilities.

The transition from 4G Long Term Evolution (LTE) networks to 5G represents more than an incremental upgrade; it constitutes a fundamental architectural transformation (Hao, 2021). Where 4G networks typically achieve data rates of 20-100 Mbps with latencies of 20-50 milliseconds, 5G promises theoretical speeds up to 20 Gbps with latencies reduced to 1-10 milliseconds (Ivanova et al., 2021). These improvements are not merely quantitative but enable qualitatively different applications and use cases.

III. 5G Technical Specifications and Capabilities

The technical architecture of 5G networks incorporates several revolutionary

technologies that distinguish it from previous generations. The implementation of millimeter wave frequencies, massive Multiple-Input Multiple-Output (MIMO) systems, and network slicing capabilities creates a foundation for unprecedented connectivity performance (Albadran, 2021).

Network slicing represents a particularly significant innovation, allowing the creation of virtualized networks tailored to specific application requirements within a single physical infrastructure (El-Saleh, 2023). This capability enables optimized performance for diverse IoT applications, from ultra-low latency industrial control systems to high-bandwidth multimedia streaming.

The integration of Software-Defined Networking (SDN) and Network Function Virtualization (NFV) within 5G architecture provides unprecedented flexibility and efficiency in network management (Batool et al., 2021). These technologies enable dynamic resource allocation and network optimization based on real-time demand patterns, particularly crucial for supporting the heterogeneous requirements of IoT ecosystems.

IV. Internet of Things: Architecture and Evolution

The Internet of Things represents a paradigm where everyday objects are embedded with sensors, software, and connectivity capabilities, enabling them to collect and exchange data autonomously (Quy et al., 2022). The concept, first articulated by Kevin Ashton in 1999, has evolved from a theoretical framework into a practical reality with profound implications for industrial processes, urban management, and personal lifestyle enhancement.

The IoT ecosystem operates on a multilayered architecture comprising sensing layers, network communication layers, data processing layers, and application interface layers. Each layer presents distinct challenges and opportunities that are significantly enhanced by 5G capabilities. The sensing layer, responsible for data collection from physical environments, benefits from 5G's ability to support massive device connectivity with up to one million devices per square kilometer (Quy et al., 2022). The integration of IoT systems with 5G networks creates new architectural possibilities that transcend traditional connectivity limitations. The convergence enables Edge Computing implementations where data processing occurs closer to the point of generation, reducing latency and bandwidth requirements while improving response times for critical applications (Kar et al., 2021).

This architectural evolution supports the development of Industrial Internet of Things (IIoT) applications that require real-time control and monitoring capabilities. Manufacturing processes, autonomous vehicle operations, and smart grid management become feasible through the combination of 5G's ultra-reliable low-latency communication and IoT's pervasive sensing capabilities.

V. 5G-IoT Convergence: Technical Synergies

The convergence of 5G and IoT technologies creates synergistic effects that exceed the sum of their individual capabilities. The enhanced Mobile Broadband (eMBB) features of 5G provide the bandwidth necessary for high-definition video streaming from IoT cameras and sensors, while Ultra-Reliable Low-Latency Communication (URLLC) enables real-time control applications in industrial and automotive sectors (Watanabe et al., 2020).

Massive Machine Type Communication (mMTC) capabilities specifically address IoT requirements by supporting simultaneous connections from thousands of low-power devices. This feature proves particularly valuable in smart city implementations where numerous sensors monitor environmental conditions, traffic patterns, and infrastructure performance across urban areas (Gohar & Nencioni, 2021).

5G networks implement advanced power management techniques that extend IoT device battery life while maintaining connectivity. The introduction of discontinuous reception cycles and optimized signaling protocols reduces energy consumption by up to 90% compared to 4G implementations (Zaki, 2020). This improvement is crucial for IoT

deployments in remote locations where device maintenance and battery replacement present logistical challenges.

The scalability improvements inherent in 5G architecture enable the support of exponentially larger IoT deployments. Network function virtualization allows dynamic scaling of network resources based on demand patterns, while edge computing capabilities distribute processing tasks closer to the data source, reducing latency and preventing central network congestion (Singh et al., 2023).

VI. Applications and Use Cases

The integration of 5G and IoT technologies enables comprehensive smart city implementations that transform urban management and citizen services. Real-time traffic optimization systems utilize data from connected vehicles, infrastructure sensors, and mobile devices to reduce congestion and improve transportation efficiency (Auat Cheein, 2020). Environmental monitoring networks track air quality, noise levels, and energy consumption across urban areas, providing data for evidencebased policy decisions.

Smart lighting systems demonstrate the practical benefits of 5G-IoT integration by adjusting illumination based on pedestrian traffic, weather conditions, and energy availability. These systems reduce energy consumption while improving public safety through responsive lighting that adapts to real-time conditions (Rong et al., 2020).

The healthcare sector experiences transformative changes through 5G-enabled IoT applications that enhance patient care and operational efficiency. Remote patient monitoring systems utilize wearable devices and implantable sensors to continuously track vital signs, medication adherence, and activity levels (Ahad et al., 2019). The ultra-low latency of 5G networks enables real-time transmission of critical health data, allowing healthcare providers to respond immediately to emergency situations.

Telemedicine applications benefit from 5G's high bandwidth capabilities, enabling high-definition video consultations and remote surgical procedures. Although still experimental in most countries, these procedures exemplify the

potential of 5G technologies in high-risk clinical environments. Robotic surgery systems operate with sub-millisecond latency, allowing surgeons to perform complex procedures on patients located thousands of miles away (Alhayani et al., 2022).

The Industrial Internet of Things (IIoT) represents one of the most significant applications of 5G-IoT convergence, enabling Industry 4.0 implementations that revolutionize manufacturing processes. Real-time monitoring of production equipment, predictive maintenance systems, and autonomous quality control mechanisms improve efficiency while reducing operational costs (Moin, 2020).

Collaborative robotics systems utilize 5G connectivity to coordinate complex manufacturing tasks that require precise timing and coordination between multiple autonomous systems. The combination of ultra-low latency communication and high-precision sensors enables robots to work safely alongside human operators while maintaining optimal productivity levels.

The automotive industry leverages 5G-IoT integration to develop fully autonomous vehicle systems that require real-time communication with infrastructure, other vehicles, and cloud-based processing systems. Vehicle-to-Everything (V2X) communication protocols utilize 5G networks to exchange critical safety information, traffic conditions, and route optimization data (Thayananthan, 2019).

Connected vehicle ecosystems create comprehensive transportation networks where traffic signals, road sensors, and vehicle systems collaborate to optimize traffic flow and prevent accidents. The ultra-reliable nature of 5G communications ensures that safety-critical information reaches its destination within the stringent timing requirements necessary for autonomous vehicle operation.

VII. Security and Privacy Considerations

The proliferation of connected devices and the expansion of network infrastructure create an enlarged attack surface that presents significant cybersecurity challenges (Khan et al., 2020). The heterogeneous nature of IoT devices, many of which lack robust security implementations, introduces vulnerabilities that can be exploited to compromise entire network segments.

The distributed architecture of 5G networks, while providing performance benefits, also creates multiple potential entry points for malicious actors. Edge computing nodes, network slicing implementations, and virtualized network functions each present distinct security considerations that require comprehensive protection strategies (Rahimi et al., 2018).

The massive data collection capabilities of 5G-IoT systems raise significant privacy concerns regarding the collection, storage, and utilization of personal information. IoT devices continuously gather data about user behavior, location patterns, and personal preferences, creating detailed profiles that, if not adequately protected, may be vulnerable to misuse (Batool et al., 2021).

Regulatory frameworks such as the General Data Protection Regulation (GDPR) establish guidelines for data protection, but the rapid evolution of 5G-IoT technologies often outpaces regulatory adaptation. Organizations implementing these technologies must develop comprehensive privacy protection strategies that ensure compliance while maintaining operational efficiency.

Advanced security architectures for 5G-IoT systems incorporate multiple layers of protection including device authentication, encrypted communication protocols, and behavioral monitoring systems. Zero-trust security models are predicated on the principle that no device or network segment should be inherently trusted, requiring continuous verification and monitoring of all network communications (Singh, 2023).

Artificial Intelligence and Machine Learning algorithms enhance security monitoring by identifying anomalous behavior patterns that may indicate cyber-attacks or system compromises. These systems can automatically isolate suspicious devices or network segments while maintaining overall system functionality.

VIII. Economic and Social Implications

The economic implications of 5G-IoT integration extend across multiple sectors, creating new business models while disrupting traditional industries. The enhanced connectivity and data processing capabilities enable the development of as-a-Service business models where companies monetize data insights rather than physical products (Attaran, 2021).

Smart manufacturing implementations reduce operational costs through predictive maintenance, optimized resource utilization, and reduced waste generation. Agricultural applications improve crop yields while minimizing water and fertilizer consumption through precision farming techniques that utilize real-time soil and weather monitoring (Tang et al., 2021).

The widespread adoption of 5G-IoT technologies creates significant changes in workforce requirements, demanding new skills while potentially displacing traditional roles. Data analysis, cybersecurity, and systems integration become increasingly important competencies across various industries (Mukhopadhyay, 2023).

Educational institutions and training programs must adapt to prepare workers for technology-enhanced roles while addressing the potential for technological unemployment in sectors where automation replaces human workers. The transition requires coordinated efforts between government, industry, and educational institutions to ensure equitable access to retraining opportunities.

The deployment of 5G infrastructure and IoT applications may exacerbate existing digital divides if not implemented with careful consideration of equitable access. Rural and economically disadvantaged communities may lack access to high-speed connectivity, potentially limiting their ability to benefit from technological advances (Ghaffarianhoseini, 2024).

Urban planning and policy development must address these equity concerns by ensuring that 5G infrastructure deployment includes underserved communities and that IoT applications provide benefits across diverse socioeconomic groups. Public-private partnerships and targeted investment programs can help bridge these gaps while promoting inclusive technological development.

IX. Environmental Sustainability and Energy Considerations

The implementation of 5G networks demonstrates significant improvements in energy efficiency compared to previous generations, achieving up to 90% better energy performance per bit transmitted (Zaki, 2020). These improvements result from advanced antenna technologies, optimized signal processing algorithms, and intelligent power management systems that adapt energy consumption to actual demand patterns.

IoT applications contribute to environmental sustainability through enhanced monitoring and control of energy systems. Smart grid implementations optimize electricity distribution based on real-time demand and renewable energy availability, while building management systems reduce energy consumption through automated control of heating, cooling, and lighting systems.

5G-enabled IoT sensor networks provide unprecedented capabilities for environmental monitoring and conservation efforts. Real-time tracking of air quality, water pollution, and biodiversity enables rapid response to environmental threats while supporting evidence-based conservation strategies. Agricultural monitoring systems optimize resource utilization while minimizing environmental impact through precision application of water, fertilizers, and pesticides.

Climate change mitigation efforts benefit from comprehensive monitoring networks that track greenhouse gas emissions, deforestation rates, and ecosystem health indicators. The data collected through these systems supports policy development and international climate agreements by providing accurate, real-time information about environmental conditions.

X. Future Prospects and Technological Evolution

The convergence of 5G and IoT technologies creates foundation for integrating additional emerging technologies including

Artificial Intelligence, blockchain, and quantum computing. AI algorithms enhance IoT system performance through predictive analytics, automated decision-making, and adaptive behavior optimization (Kumari et al., 2021).

Blockchain technology addresses security and trust challenges in distributed IoT systems by providing immutable transaction records and decentralized authentication mechanisms. The combination performance, IoT connectivity, and blockchain security creates robust platforms applications requiring high trust and transparency levels.

The continued evolution of 5G-IoT systems requires ongoing standardization efforts to ensure interoperability between devices and networks from different manufacturers. International cooperation through organizations such as the 3rd Generation Partnership Project (3GPP) and the Internet Engineering Task Force (IETF) establishes common protocols and interfaces that enable seamless integration across diverse systems.

The complexity of modern technology ecosystems necessitates careful coordination between standards development, regulatory frameworks, and industry implementation to avoid fragmentation that could limit the benefits of technological convergence.

XI. Challenges and Limitations

The deployment of 5G networks requires substantial infrastructure investments including new base stations, fiber optic connections, and edge computing facilities. The higher frequency bands used by 5G have shorter transmission ranges, requiring denser network deployments compared to previous generations (Rong et al., 2020).

The economic burden of infrastructure deployment may create barriers to universal 5G access, particularly in rural and economically disadvantaged areas where the return on investment is lower. Government policies and public-private partnerships become crucial for ensuring equitable access to advanced telecommunications infrastructure.

The integration of 5G and IoT technologies involves significant technical complexity that requires specialized expertise and careful system design. Interoperability between devices from different manufacturers, protocol compatibility issues, and system optimization challenges can impede successful implementation.

The heterogeneous nature of IoT devices presents particular challenges for network management and security implementation. Organizations must develop comprehensive strategies for device lifecycle management, security updates, and performance monitoring across diverse device portfolios.

The rapid evolution of 5G-IoT technologies often outpaces regulatory adaptation, creating uncertainty about compliance requirements and acceptable use policies. Privacy regulations, spectrum allocation policies, and cybersecurity standards must evolve to address the unique characteristics of these converged technologies.

Ethical considerations regarding data collection, algorithmic decision-making, and automated systems require careful examination to ensure that technological progress serves societal interests while protecting individual rights and freedoms.

XII. Conclusion

The convergence of 5G wireless technology and the Internet of Things represents a transformative force that promises to reshape multiple aspects of modern society. The technical capabilities enabled by this convergence including ultra-low latency communication, massive device connectivity, and enhanced bandwidth. This, creates opportunities for innovations across healthcare, transportation, manufacturing, and urban management sectors.

The analysis reveals that while the 5G-IoT integration offers substantial benefits in terms of efficiency, productivity and service quality, it also presents significant challenges related to cybersecurity, privacy protection, and equitable access. The successful implementation of these technologies requires coordinated efforts among technologists, policymakers, and social stakeholders to address these challenges while maximizing societal benefits.

The economic implications of 5G-IoT extend beyond technological convergence enhancement to encompass fundamental changes in business models, workforce requirements, and competitive dynamics across industries. Organizations must adapt their strategies to leverage these capabilities while addressing the associated risks implementation challenges.

Environmental sustainability also emerges as both an opportunity and a responsibility within 5G-IoT implementation. While these technologies enable more efficient resource utilization and environmental monitoring, their deployment must consider energy consumption and electronic waste implications to ensure net positive environmental impact.

Looking toward the future, the foundation established by 5G-IoT convergence sets the stage for even more advanced technological integrations including artificial intelligence, quantum computing, and eventual 6G networks. The successful navigation of current implementation challenges will determine society's ability to realize the full potential of these emerging technological paradigms.

The path forward requires sustained investment in infrastructure development, education and workforce preparation, regulatory framework evolution. international cooperation to ensure that the benefits of 5G-IoT convergence are realized equitably across global society. Only through such comprehensive and coordinated efforts can these technologies fulfill their promise of enhancing human capabilities while addressing the complex challenges facing modern civilization.

The research demonstrates that 5G and than technological represent more upgrades; they constitute foundational elements of a digitally integrated society where physical and virtual systems collaborate seamlessly to human experience, enhance economic productivity, and environmental sustainability. The realization of this vision depends on our collective ability to manage the transition thoughtfully, ensuring that technological progress serves the broader interests of humanity while preserving the values and principles that define civilized society.

XIII. References

Ahad, A., Tahir, M., & Yau, K. (2019). 5G-based smart healthcare network: Architecture, taxonomy, challenges and future research directions. *IEEE Access*, 7, 100747-100762. https://doi.org/10.1109/ACCESS.2019.2930628

Albadran, S. (2021). Evaluation of development level and technical contribution of recent technologies adopted to meet the challenges of 5G wireless cellular networks. *Symmetry*, 13(4), 635. https://doi.org/10.3390/sym13040635

Alhayani, B., Kwekha-Rashid, A. S., Mahajan, H. B., Ilhan, H., Uke, N., Alkhayyat, A., & Mohammed, H. J. (2022). 5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: Perspective of smart healthcare system. *Applied Nanoscience*, 12(4), 2515-2532. https://doi.org/10.1007/s13204-021-02152-4

Attaran, M. (2021). The impact of 5G on the evolution of intelligent automation and industry digitization. *Journal of Ambient Intelligence and Humanized Computing*, 12(2), 5977-5993. https://doi.org/10.1007/s12652-020-02521-x

Auat Cheein, F. (2020). The role of 5G technologies: Challenges in smart cities and intelligent transportation systems. *Sustainability*, 12(16), 6469. https://doi.org/10.3390/su12166469

Banik, S., Cardenas, I. S., & Kim, J. H. (2019). IoT platforms for 5G network and practical considerations: A survey. *arXiv preprint*. https://arxiv.org/abs/1907.03592

Batool, A., Sun, B., Saleem, A. F., & Ali, J. (2021). Convergence of 5G with Internet of Things for enhanced privacy. *arXiv preprint*. https://arxiv.org/abs/2107.04594

El-Saleh, A. A. (2023). Measurements and analyses of 4G/5G mobile broadband networks: An overview and a case study. *Wireless Communications and Mobile Computing*, 2023, 6205689. https://doi.org/10.1155/2023/6205689

Ghaffarianhoseini, A. (2024). IoT-enabled smart cities: A hybrid systematic analysis of key research areas, challenges, and recommendations for future direction. *Smart Cities*, 7(1), 38-64. https://doi.org/10.1007/s44327-024-00002-w

Gohar, A., & Nencioni, G. (2021). The role of 5G technologies in a smart city: The case for intelligent transportation system. *Sustainability*, 13(9), 5188. https://doi.org/10.3390/su13095188

Hao, Y. (2021). Investigation and technological comparison of 4G and 5G networks. *Journal of Communications and Computer*, 18(1), 23-28. https://doi.org/10.17265/1548-7709/2021.01.003

Ivanova, E. P., Iliev, T., Stoyanov, I., & Mihaylov, G. (2021). Evolution of mobile networks and seamless transition to

5G. *IOP Conference Series: Materials Science and Engineering*, 1032(1),

012008. https://doi.org/10.1088/1757899X/1032/1/012008

Kar, S., Mishra, P., & Wang, K. C. (2021). 5G-IoT architecture for next generation smart systems. *IEEE Transactions on Network Science and Engineering*, 8(4), 2847-2861. https://doi.org/10.1109/TNSE.2021.3118875

Khan, R., Kumar, P., Jayakody, D., & Liyanage, M. (2020). A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions. *IEEE Communications Surveys & Tutorials*, 22(1), 196-

248. https://doi.org/10.1109/COMST.2019.2933899

Kumari, A., Gupta, R., & Tanwar, S. (2021). Amalgamation of blockchain and IoT for smart cities underlying 6G communication: A comprehensive review. *Computer Communications*, 172, 102-118. https://doi.org/10.1016/j.comcom.2021.03.005

Lin, X. (2025). 3GPP evolution from 5G to 6G: A 10-year retrospective. *Telecom*, 6(2), 32. https://doi.org/10.3390/telecom6020032

Moin, S. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. *Mechanical Systems and Signal Processing*, 135, 106382. https://doi.org/10.1016/j.ymssp.2019.106382

Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: Recent advancements and future trends. *Sensors*, 23(11), 5206. https://doi.org/10.3390/s23115206

Muppavaram, K., Govathoti, S., Kamidi, D., & T, B. (2023). Exploring the generations: A comparative study of mobile technology from 1G to 5G. *International Journal of Electronics and Communication Engineering*, 10(7), 45-62. https://doi.org/10.5281/zenodo.8172984

Quy, V. K., Hoai, N. V., Manh, L. D., Ngoc, L. A., & Jeon, G. (2022). IoT-enabled smart agriculture: Architecture, applications, and challenges. *Applied Sciences*, 12(7),

3396. https://doi.org/10.3390/app12073396

Rahimi, H., Zibaeenejad, A., Rajabzadeh, P., & Safavi, A. A. (2018). On the security of the 5G-IoT architecture. *Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization*, 45-50. https://doi.org/10.1145/3269961.3269968Rong, B., Han, S., Kadoch, M., Chen, X., & Jara, A. J. (2020). Integration of 5G networks and Internet of Things for future smart city. *Wireless Communications and Mobile Computing*, 2020, 2903525. https://doi.org/10.1155/2020/2903525

Singh, G. (2023). Cybersecurity in Internet of medical vehicles: State-of-the-art analysis, research challenges and future perspectives. *Sensors*, 23(19), 8107. https://doi.org/10.3390/s23198107

Singh, D., Kumar, A., & Sharma, R. (2023). 5G and Internet of Things—Integration trends, opportunities, and future research avenues. *Future Generation Computer Systems*, 145, 234-251. https://doi.org/10.1016/j.future.2023.03.012

Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., & He, Y. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. *Computers and Electronics in Agriculture*, 180, 105895. https://doi.org/10.1016/j.compag.2020.105895

Thayananthan, V. (2019). Internet of Things based 5G infrastructure for securing transportation facilities in smart cities. *International Journal of Computer Applications*, 181(46), 23-29. https://doi.org/10.5120/ijca2019918614

Watanabe, A. O., Ali, M., Sayeed, S. Y. B., Tummala, R., & Raj, P. M. (2020). A review of 5G front-end systems package integration. *arXiv preprint*. https://arxiv.org/abs/2009.07208

Zaki, A. I. (2020). Energy-efficient and reliable Internet of Things for 5G: A framework for interference control. *Electronics*, 9(12), 2165. https://doi.org/10.3390/electronics9122165