

Repositório ISCTE-IUL

Deposited in *Repositório ISCTE-IUL*:

2026-02-10

Deposited version:

Accepted Version

Peer-review status of attached file:

Peer-reviewed

Citation for published item:

Coelho, P., Silva, J. & Souto, N. (2025). The the role of artificial intelligence as a key enabler for 6G wireless communication systems. In Patrícia Dias, José Gabriel Andrade, Fernando Ilharco (Ed.), Comunicação e inteligência artificial: perspetivas multidisciplinares. (pp. 276-283). Lisboa: UCP Editora.

Further information on publisher's website:

<https://www.uceditora.ucp.pt/pt/povos-e-culturas/3393-comunicacao-e-inteligencia-artificial.html>

Publisher's copyright statement:

This is the peer reviewed version of the following article: Coelho, P., Silva, J. & Souto, N. (2025). The the role of artificial intelligence as a key enabler for 6G wireless communication systems. In Patrícia Dias, José Gabriel Andrade, Fernando Ilharco (Ed.), Comunicação e inteligência artificial: perspetivas multidisciplinares. (pp. 276-283). Lisboa: UCP Editora.. This article may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in the Repository
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

The Role of Artificial Intelligence as a Key enabler for 6G Wireless Communication Systems

Pedro Coelho¹, João Silva^{1,2}, Nuno Souto^{1,2}

¹Department of Information Science and Technology, ISCTE-University Institute of Lisbon, 1649-026 Lisbon, Portugal

²Department of Information Science and Technology, Instituto de Telecomunicações, 1049-001 Lisbon, Portugal

Artificial Intelligence (AI) is revolutionizing the field of communication in various areas. On one hand, Natural Language Processing (NLP) allows AI to analyze and understand human language, enabling automated services such as translation, sentiment analysis, and chatbots for an easier customer experience. On the other end, AI-driven content generation allows for the automation of targeted and personalized content creation. Additionally, AI-powered speech recognition and synthesis technology are being used to enhance features such as voice assistants, transcription services, and language learning platforms.

While the benefits of the use of AI in these areas of communication are widely discussed, its social and economic impact in the transfer of information via wireless communication systems, like 6G, is no less profound [1]. AI-driven innovation leads to optimized network performance and faster data transmission rates and more reliable connectivity, which in turn enhances the efficiency of several industries, ranging from healthcare to transportation. Moreover, AI algorithms are able to efficiently manage network resources, reducing energy consumption and operational costs, thus contributing to a more sustainable environment. On a societal level, AI-powered wireless communication is facilitating access to information and services in remote areas, bridging the digital divide and empowering underserved communities. Additionally, AI-driven network security mechanisms bolster data privacy and protection, fostering trust and confidence in digital interactions. The convergence of AI and wireless communication not only fuels economic growth through enhanced productivity and innovation but also fosters social inclusion and empowers individuals and communities worldwide.

Just as each new generation of mobile technology has brought advancements in data transfer speed, the upcoming 6G wireless communication systems promise even greater achievements. This progress is mainly being driven by the continuous need for faster and more reliable connections to support emerging technologies, like holographic applications and real-time services. To overcome these challenges, 6G must focus on improving the use of the already available resources, specifically in terms of time, electromagnetic waves, and even space [2]. In this chapter we analyze how AI, particularly through Machine Learning (ML), will enable 6G to explore these resources, using higher wave frequencies, with **Terahertz (THz) waves**, creating smart radio environments through the use of **Reconfigurable Intelligent Surfaces (RIS)** and changing the traditional structure of the cellular network via **cell-free massive MIMO** [3].

1) ML in the implementation of THz Communications

Every time a new generation of mobile wireless technology arrives, we experience a big jump in how fast data can be sent and received. This boost in speed is influenced by many aspects, but one of the main reasons is the steady increase in the number of frequencies available for electro-magnetic waves to use, known as bandwidth [4]. This expansion into higher frequency bandwidths is certain to continue, and as research into THz communications gains traction, some of its challenges start becoming apparent.

One of the main challenges with using higher frequency waves is that they don't travel as far and can easily be disrupted by objects in the environment, leading to a weak, poor-quality signal. However, there's a clever solution called beamforming or precoding. Instead of sending the signal out in all directions, it's focused into a narrow beam, making it more powerful and efficient [5]. Although setting up traditional beamforming systems can be expensive and time-consuming, by combining digital and analog technology with Machine Learning, we've found ways to achieve similar results at a much lower cost. Additionally, Machine Learning can help predict the most efficient way to form the beams, saving even more time and resources [6].

TABLE I

Generation	Data Rate	BandWidth
1G	2,4 – 14,4 kb/s	150 kHz
2G	14,4 – 64 kb/s	5 – 20 MHz
3G	3,1 – 14,7 Mb/s	25 MHz
4G	200 Mb/s – 1 Gb/s	100 MHz
5G	+1 Gb/s	1 - 2 GHz

Progression of bandwidth and data rate through the different generations of mobile wireless communications[7]

ML can also play an important role in surpassing two other challenges associated with the use of larger bandwidth in these communication systems:

1. THz waves face high levels of interference and weakening in the atmosphere, making it hard to accurately estimate and model the communication channels (i.e. the environment). ML algorithms have shown great promise in analyzing

communication data in real-time to figure out the environment conditions [8].

2. THz spectrum is getting increasingly occupied and, considering that other applications are already advancing into these bandwidths (such as meteorology, spectroscopy, etc.), the conflicts between applications are expected to increase. ML techniques (specifically Deep Learning techniques) are uniquely suited to deal with the amount of data involved and to make decisions regarding spectrum allocation within a busy bandwidth.

2) ML in the implementation of RIS

While strategies like beamforming help address issues like signal weakening, there is another challenge that arises with higher frequency waves: blockage [9]. One naïve approach to tackling this issue might be to increase the number of deployed Base Stations (that is, antenna stations), however this comes at a significant cost increase in both hardware and energy consumption.

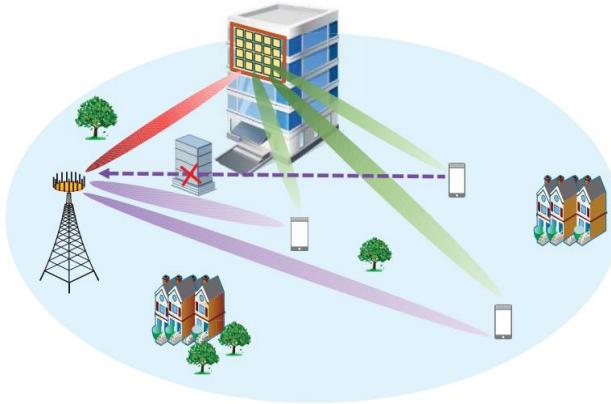


Fig. 1 - Example of a wireless communication system enabled using RIS [10]

Reflective Intelligent Surfaces (RIS) have been proposed as a solution to this issue. These surfaces can be installed in indoor and large outdoor surfaces (e.g., building facades or ceilings), allowing signals to navigate around obstacles that would otherwise disrupt them.

At its core, RIS consists of a reflecting surface, composed of an array of reflecting elements, each of which can apply a phase shift to the incoming wave. These elements are composed of metamaterials and, as such, can be tuned to apply a specific phase-shift in real-time, autonomously. With the careful adjustment of each element, the incoming waves can be properly directed to their target direction.

Much like any new technology when it is first employed, RIS brings not only new capabilities and tools to tackle some of the current issues facing wireless communications, but also a plethora of new challenges related to the new technology itself.

One challenge with Reconfigurable Intelligent Surfaces [9] is their need to adjust to a changing environment with lots of moving mobile users. Machine Learning is well-suited to handle this challenge, since it can continuously update itself with new information, adjusting how these surfaces reflect signals, which in turn improves the quality of service for users by directing signals more effectively.

As wireless communication becomes more advanced, with technologies like Multiple-Input Multiple-Output (MIMO), the capability to distinguish the transmitted signals from the background noise/interference, in a process designated as Signal Detection (SD), is becoming increasingly challenging. Signal detection algorithms need to be both simple to keep energy and computing costs low, and robust to catch errors effectively [11]. Balancing these two goals can be tricky, as they often conflict. However, Machine Learning shows promise in finding a good middle ground between simplicity and robustness, potentially improving signal detection in wireless communication systems.

3) ML in the Implementation of cell-free mMIMO

When communication frequencies increase, it causes signals to weaken more quickly over distances, which makes it harder for regular antennas to cover large areas effectively. One common approach to overcome this issue is to use MIMO technology. This means installing multiple antennas at each transmitting station, which helps improve signal strength and allows for better use of the available radio spectrum [12]. Another method is to create smaller cells within the network, that is, to deploy additional stations to reduce the area that each station covers [13]. This helps improve overall coverage and capacity, however, even with these solutions, there's still an issue with interference between cells, especially at their edges, which can lead to poorer quality of service for users.

Cell-free MIMO offers a solution to the problem of interference between cells in wireless networks. Unlike traditional cell-based networks, where large base stations handle all communication within specific cells, cell-free MIMO takes a user-centric approach. Instead of having centralized base stations, with a very large number of antennas, numerous smaller service antennas or Access Points (APs) are spread across a wider area. These APs are connected to central processing units (CPUs) that can coordinate amongst themselves, to serve each user more effectively.

A key challenge for user-centric approach is selecting the right Access Points to serve each user [3]. The complexity of this process is exponentiated by the fact that many users are mobile, adding to the need for the system to constantly adjust its calculations. Traditional selection methods put a heavy load on the system's processing units. However, Machine Learning algorithms have shown promise in solving this problem more efficiently, requiring less computing power while still making accurate AP selections [14].

AI already plays a huge role in communication. In this chapter, we explored three technologies that are likely to shape the future of 6G wireless communication and discussed how AI will contribute to these advancements. While we've seen promising progress, there's still more research needed to fully integrate AI into the next generation of communication systems.

- [1] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, "Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks," *IEEE Communications Surveys & Tutorials*, vol. 22, no. 3, pp. 1472–1514, 2020, doi: 10.1109/COMST.2020.2965856.
- [2] P. Yang, Y. Xiao, M. Xiao, and S. Li, "6G Wireless Communications: Vision and Potential Techniques," *IEEE Netw*, vol. 33, no. 4, pp. 70–75, Jul. 2019, doi: 10.1109/MNET.2019.1800418.
- [3] M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L. Cotton, and V. F. Fusco, "The Road to 6G: Ten Physical Layer Challenges for Communications Engineers," Apr. 2020, [Online]. Available: <http://arxiv.org/abs/2004.07130>
- [4] T. S. Rappaport *et al.*, "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," *IEEE Access*, vol. 7, pp. 78729–78757, 2019, doi: 10.1109/ACCESS.2019.2921522.
- [5] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," *IEEE Trans Wirel Commun*, vol. 13, no. 3, pp. 1499–1513, Mar. 2014, doi: 10.1109/TWC.2014.011714.130846.
- [6] M. S. Aljumaily and H. Li, "Machine Learning Aided Hybrid Beamforming in Massive-MIMO Millimeter Wave Systems," in *2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)*, IEEE, Nov. 2019, pp. 1–6. doi: 10.1109/DySPAN.2019.8935814.
- [7] M. Alsabah *et al.*, "6G Wireless Communications Networks: A Comprehensive Survey," *IEEE Access*, vol. 9, pp. 148191–148243, 2021, doi: 10.1109/ACCESS.2021.3124812.
- [8] P. Dong, H. Zhang, G. Y. Li, I. S. Gaspar, and N. Naderializadeh, "Deep CNN-Based Channel Estimation for mmWave Massive MIMO Systems," *IEEE Journal on Selected Topics in Signal Processing*, vol. 13, no. 5, pp. 989–1000, 2019, doi: 10.1109/JSTSP.2019.2925975.
- [9] S. Basharat, S. A. Hassan, H. Pervaiz, A. Mahmood, Z. Ding, and M. Gidlund, "Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks," *IEEE Wirel Commun*, vol. 28, no. 6, pp. 184–191, Dec. 2021, doi: 10.1109/MWC.011.2100016.
- [10] X. Wei, D. Shen, and L. Dai, "Channel Estimation for RIS Assisted Wireless Communications - Part I: Fundamentals, Solutions, and Future Opportunities," *IEEE Communications Letters*, vol. 25, no. 5, pp. 1398–1402, May 2021, doi: 10.1109/LCOMM.2021.3052822.
- [11] D. Xu, Z. Ding, and Y. Cheng, "Summary of MIMO System Signal Detection Algorithms under Deep Learning," in *ACM International Conference Proceeding Series*, Association for Computing Machinery, Sep. 2021, pp. 412–418. doi: 10.1145/3488933.3488944.
- [12] H. He, X. Yu, J. Zhang, S. H. Song, and K. B. Letaief, "Cell-Free Massive MIMO for 6G Wireless Communication Networks," *Journal of Communications and Information Networks*, vol. 6, no. 4, Oct. 2021, [Online]. Available: <http://arxiv.org/abs/2110.07309>
- [13] G. Interdonato, E. Björnson, H. Quoc Ngo, P. Frenger, and E. G. Larsson, "Ubiquitous cell-free Massive MIMO communications," *Eurasip Journal on Wireless Communications and Networking*, vol. 2019, no. 1. Springer International Publishing, Dec. 01, 2019. doi: 10.1186/s13638-019-1507-0.
- [14] S. Biswas and P. Vijayakumar, "AP selection in Cell-Free Massive MIMO system using Machine Learning Algorithm," in *2021 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2021*, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 158–161. doi: 10.1109/WiSPNET51692.2021.9419450.