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 a b s t r a c t

We investigate the weak cosmic censorship conjecture by analyzing the dynamics of spinning timelike particles 
dropped along the rotational axis of an extremal Kerr-(anti-)de Sitter black hole. This idea was first considered in a 
seminal paper by Wald and later by Needham but both analyses were restricted to asymptotically flat spacetimes. 
We generalize these studies, involving spinning particles, to rotating spacetimes with non vanishing cosmological 
constant. We examine whether the absorption of such particles can overspin the black hole beyond extremality, 
potentially leading to the formation of a naked singularity. In asymptotically de Sitter spacetime, we find that 
particles that are captured cannot overspin the black hole. Similar conclusions hold also with anti-de Sitter 
asymptotics, but the analysis is more subtle, requiring careful consideration of the point particle approximation.

1.  Introduction

The possible appearance of spacetime singularities in General Rela-
tivity, regions where Einstein’s field equations break down, poses an im-
portant problem in the deterministic evolution of the spacetime geome-
try [1]. To preserve the theory’s predictive power, it is crucial that such 
singularities do not influence regions accessible to distant observers. 
This is the core idea behind the weak cosmic censorship conjecture 
(WCCC), formulated by Penrose [2]. It posits that, under generic ini-
tial conditions and for physically reasonable matter, singularities aris-
ing from gravitational collapse are always hidden from view to distant 
observers by an event horizon.

A definitive proof of WCCC remains elusive, prompting extensive 
scrutiny in a variety of physical scenarios. One particularly compelling 
approach involves assessing whether the event horizon of a black hole 
(BH) can be destroyed by injecting test particles, a method pioneered by 
Wald [3] for an extremal Kerr-Newman BH. This work was later gener-
alized by Sorce and Wald [4], who developed a formalism that includes 
arbitrary matter distributions and accounts for backreaction effects at 
quadratic order. Their analysis confirmed that the WCCC holds for both 
extremal and nearly extremal Kerr-Newman BHs and provided a more 
robust framework for probing the conjecture.

Realistic BHs, however, are not isolated objects in asymptotically 
flat spacetime. Observations indicate that our universe is undergoing 
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accelerated expansion, consistent with the presence of a positive cos-
mological constant and a de Sitter (dS) background [5–7]. Meanwhile, 
asymptotically anti-de Sitter (AdS) spacetimes —characterized by a 
negative cosmological constant— have become central to theoretical 
physics due to their role in the gauge/gravity duality [8,9]. Thus, 
understanding the fate of cosmic censorship in rotating BHs within 
both dS and AdS backgrounds is of paramount importance. Various 
studies have examined the conjecture in AdS settings under diverse 
conditions [10–20], as well as in the Kerr-dS case [11,21–23], generally 
finding that the WCCC remains intact1

In this letter, we generalize Wald’s original thought experiment to 
assess whether spinning particles, dropped into an extremal Kerr-(A)dS 
BH along its axis of rotation, can breach the extremality condition, ef-
fectively destroying the horizon and violating the WCCC. See Fig. 1 
for a pictorial representation of the setup considered. Refs. [15,22] 
proved more generally that extremal Kerr-Newman-(A)dS cannot be 
overcharged/overspun with test fields obeying the null energy condi-
tion. Since physical spinning bodies —of which spinning particles can 

1 Nevertheless, exceptions have been reported: in particular, charged models 
in AdS4 have suggested that regions with arbitrarily large curvatures become 
visible to boundary observers in certain fine-tuned configurations [24,25]. Ad-
ditionally, small Kerr-AdS suffer from the superradiant instability, which also 
might impact the horizon stability and, thus, the WCCC [26–29].
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Fig. 1. Schematic representation of the setup considered. A point-like spinning 
particle is injected and moves radially along the axis of rotation of an extremal 
Kerr-(A)dS BH.

be considered a limiting case— should satisfy the dominant energy con-
dition [30], and that implies the null energy condition, the analysis we 
present falls under the conditions of the theorems proved in [15,22]. 
Nevertheless, the specific calculation we perform is useful to compare 
with similar tests in rotating BH backgrounds different from Kerr-(A)dS.

Despite the extensive exploration of the WCCC via test particles in 
geodesic motion, studies involving spinning particles are scarce, and 
have only been carried out in asymptotically flat spacetimes [3,31,32], 
to the best of our knowledge. Additionally, the Sorce-Wald method has 
not yet been applied to rotating and non-asymptotically flat BHs. Only 
a handful of results exist in static charged models with a cosmological 
constant [33–35].

This gap in the literature highlights the need for further investigation 
in cosmologically/astrophysically relevant settings and with important 
holographic implications.

2.  Kerr-(A)dS metric

We consider the Kerr-(A)dS metric written in Boyer-Lindquist coor-
dinates (𝑡, 𝑟, 𝜃, 𝜑) [36,37] (we adopt units in which 𝑐 = 𝐺 = 1)

d𝑠2 = −
Δ𝑟

𝜌2

(

d𝑡 − 𝑎 sin2 𝜃
Ξ

d𝜑
)2

+
𝜌2

Δ𝑟
d𝑟2 +

𝜌2

Δ𝜃
d𝜃2

+
sin2 𝜃Δ𝜃

𝜌2

(

𝑎 d𝑡 − 𝑟2 + 𝑎2

Ξ
d𝜑

)2
, (1)

with the metric functions defined as

Δ𝑟 = (𝑟2 + 𝑎2)
(

1 ± 𝑟2

𝐿2

)

− 2𝑀𝑟 , (2)

Δ𝜃 = 1 ∓ 𝑎2

𝐿2
cos2 𝜃 , (3)

𝜌2 = 𝑟2 + 𝑎2 cos2 𝜃 , Ξ = 1 ∓ 𝑎2

𝐿2
, (4)

where 𝐿 is the (A)dS length related to the cosmological constant, while 
𝑀 and 𝑎 denote the BH’s mass and spin (per unit mass) parameters, 
respectively. The factor Ξ ensures the correct normalization of the an-
gular coordinate 𝜑 to 2𝜋, thereby eliminating conical deficits at the poles 
𝜃 = 0, 𝜋.

These spacetimes are solutions to the Einstein equations with a cos-
mological constant. Throughout this work, the upper (lower) sign refers 
to the Kerr-AdS (Kerr-dS) case. The two metrics are related via the an-
alytic continuation 𝐿2 → −𝐿2. The Kerr spacetime is recovered in the 
limit 𝐿2 → ∞.

This family of geometries is characterized by two charges, their mass 
and angular momentum, given respectively by [38–40]

 = 𝑀
(

1 ∓ 𝑎2
𝐿2

)2
,  = 𝑎𝑀

(

1 ∓ 𝑎2
𝐿2

)2
. (5)

Let us now briefly discuss the causal structure of these spacetimes. Inde-
pendently of the sign of the cosmological constant there is a curvature 
singularity at 𝑟 = 0, corresponding to a ring on the equatorial plane. In 
the Kerr-dS case the function Δ𝑟 can have at most three real roots, corre-
sponding to the inner horizon, 𝑟I, the event horizon, 𝑟H, and the cosmo-
logical horizon 𝑟C, satisfying 0 ≤ 𝑟I ≤ 𝑟H ≤ 𝑟C. While the cosmological 
horizon is always present, the other two horizons may be absent, de-
pending on the choice of background parameters 𝑎 and 𝑀 . If these two 
horizons are absent, the curvature singularity is naked. The threshold 
separating shielded from naked singularities occurs when the event and 
inner horizons are degenerate, corresponding to an extremal configu-
ration. Extremality is therefore defined by Δ𝑟(𝑟H) = Δ′

𝑟(𝑟H) = 0. This is 
satisfied in the situation just described, i.e., 𝑟I = 𝑟H, or else in the Nariai 
limit, in which 𝑟H = 𝑟C. As the latter does not represent a BH spacetime, 
in this work we focus on the first possibility. The explicit extremality 
conditions read:

𝑀 =
𝑎2𝐿2 + 𝑟4H

𝐿2𝑟H
, 𝑟H =

√

𝐿2 − 𝑎2 − 𝛽−
6

, (6)

where we defined, for brevity, 𝛽± ≡
√

𝑎4 + 𝐿4 ± 14𝑎2𝐿2. To ensure the 
reality of the above expressions in the dS case, we must restrict the BH 
spin parameter to the range 0 ≤ 𝑎∕𝐿 ≤ 𝑎̃max, with 𝑎̃max = 2 −

√

3 ≃ 0.268
(which solves 𝛽− = 0). In the Kerr-AdS case, instead, the spacetime may 
exhibit two horizons (i.e., two real distinct roots of Δ𝑟), no horizons 
(corresponding to a naked singularity), or an extremal horizon, again 
defined as before. The extremality condition, in this case, yields

𝑀 =
𝑎2𝐿2 − 𝑟4H

𝐿2𝑟H
, 𝑟H =

√

𝛽+ − 𝑎2 − 𝐿2

6
. (7)

Furthermore, we restrict the parameters to 0 ≤ 𝑎∕𝐿 < 1, in order to avoid 
divergences in the line element Eq. (1).2

In the limit 𝐿2 → ∞, both Eqs. (6) and (7) reduce to 𝑟H = 𝑀 = 𝑎, as 
expected, since the latter is the extremality condition for Kerr BHs.

3.  Spinning test particles along the axis of rotation

The equations describing the motion of spinning test particles are 
known as the Mathisson-Papapetrou-Dixon (MPD) equations [41–43]: 
D𝑝𝜇

D𝜆
= −1

2
𝑅𝜇

𝜈𝜌𝜎𝑣
𝜈𝑆𝜌𝜎 , (8a)

D𝑆𝜇𝜈

D𝜆
= 𝑝𝜇𝑣𝜈 − 𝑝𝜈𝑣𝜇 , (8b)

where 𝑅𝜇
𝜈𝜌𝜎 is the Riemann tensor, 𝜆 is an affine parameter along the 

trajectory, D∕D𝜆 ≡ 𝑣𝜈∇𝜈 is the directional covariant derivative, 𝑣𝜇 rep-
resents the 4-vector tangent to the trajectory while 𝑝𝜇 is the total 4-
momentum of the particle (of which we provide more details below), 
and 𝑆𝜇𝜈 is the antisymmetric spin tensor representing the internal an-
gular momentum of the particle.

The dynamics described by Eq. (8a) is not closed. A supplementary 
spin condition is typically imposed, fixing the center of the particle, thus 
specifying its world line. We adopt one of the most widely used choices, 
the Tulczyjew condition 𝑝𝜇𝑆𝜇𝜈 = 0 [44]. It ensures that the intrinsic par-
ticle spin 𝑠, defined by

𝑠2 = 1
2
𝑆𝜇𝜈𝑆𝜇𝜈 , (9)

2 The restriction to non-negative values for 𝑎∕𝐿 is only a matter of convention. 
Negative values can be considered by flipping the sign of 𝑎.
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is conserved, by virtue of Eq. (8b) (see also Ref. [45]). The right hand 
side of Eq.  (8a) describes the spin-curvature interaction [45,46]. The 
test particle’s 4-momentum 𝑝𝜇 that allows to express the MPD equations 
in the form Eq. (8a) is defined by

𝑝𝜇 = 𝑚𝑣𝜇 − 𝑣𝜈
D𝑆𝜇𝜈

D𝜆
, (10)

where 𝑚 is the mass of the particle. It can be checked that 𝑚2 = −𝑝𝜇𝑝𝜇

is also a conserved quantity [45,46].
In this letter, we perform WCCC tests considering the absorption of 

spinning massive test particles falling along the BH’s rotation axis 𝜃 = 0, 
with the particle spin parallel to the axis (see Fig. 1). In this specific 
setup, the tangent vector has components 𝑣𝜇 = (𝑣𝑡, 𝑣𝑟, 0, 0), while the 
only non-zero components of the spin tensor are 𝑆𝜃𝜑 = −𝑆𝜑𝜃 (see also 
Ref. [47]). From Eq. (10), the 4-momentum 𝑝𝜇 is parallel to 𝑣𝜇 in this 
case, i.e., 𝑝𝜇 = 𝑚𝑣𝜇 = (𝑝𝑡, 𝑝𝑟, 0, 0). To evaluate 𝑆𝜃𝜑, we employ the nor-
malization condition Eq. (9), which gives

𝑆𝜃𝜑 = 𝑠
√

𝑔𝜃𝜃𝑔𝜑𝜑
= 1

sin 𝜃
𝑠

𝑎2 + 𝑟2

(

1 ∓ 𝑎2

𝐿2

)

+ (𝜃) , (11)

where in the second equality we performed a series expansion around 
the axis of rotation 𝜃 = 0. Clearly, 𝑆𝜃𝜑 diverges on the axis, but all scalar 
invariants remain regular there.

In the following, we will consider future-directed particles, namely 
those with 𝑝𝑡 < 0,3 that are captured by the BH. To compute 𝑝𝑡, we ex-
ploit time translation invariance of the spacetime and use the conserved 
quantities along the motion of spinning particles, whose general expres-
sion reads as [48]

𝑄𝜉 = 𝜉𝜇𝑝𝜇 − 1
2
𝑆𝜇𝜈∇𝜈𝜉𝜇 = 𝜉𝜇𝑝𝜇 − 1

2
𝑆𝜇𝜈𝜕𝜈𝜉𝜇 , (12)

where the 𝜉’s are the Killing vectors 𝜉𝜇(𝑡) = 𝛿𝜇𝑡  and 𝜉𝜇(𝜙) = 𝛿𝜇𝜙, related to 
time-translation and rotational invariance, respectively. 𝑄𝜕𝜑 , related 
to the orbital angular momentum, is zero for spinning particles mov-
ing along the BH axis of rotation. The energy 𝐸 of the particle, in-
stead, is associated with 𝜉𝜇(𝑡) and can be written as −𝐸 = 𝑝𝑡 +

1
2𝑆

𝜃𝜑𝜕𝜃𝑔𝑡𝜑,
or, explicitly,

𝑝𝑡 = −𝐸 + 𝑎𝑠

[

2𝑀𝑟
(

𝑎2 + 𝑟2
)2

∓ 1
𝐿2

]

. (13)

The condition 𝑝𝑡 < 0, thus, translates into an upper bound on the spin-
to-energy ratio 𝑠̂ ≡ 𝑠∕𝐸 for a particle to be absorbed by the BH. In the 
Kerr-dS case, imposing 𝑝𝑡 < 0 at the extremal horizon and using Eq. (6) 
yields

𝑠̂ <
𝐿2(5𝑎2 + 𝐿2 − 𝛽−

)

6𝑎
(

𝐿2 + 𝑎2
) ≡ 𝑠̂dS1 . (14)

Similarly, in the extremal Kerr-AdS case, one obtains, using Eq. (7),

𝑠̂ <
𝐿2(5𝑎2 − 𝐿2 + 𝛽+

)

6𝑎
(

𝐿2 − 𝑎2
) ≡ 𝑠̂AdS1 . (15)

To test the WCCC using the standard procedure, one considers in-
falling particles with normalized spins ̂𝑠 saturating these bounds. Clearly 
this is the case that has better chances of overspinning the BH. One then 
analyzes the final geometry after the particle is absorbed (assuming the 
perturbed BH settles down to a Kerr-(A)dS spacetime, and neglecting en-
ergy and angular momentum loss due to gravitational radiation). This 
approach was employed by Wald [3] for an extremal Kerr BH and it 
is instructive to do the comparison. Indeed, in the 𝐿2 → ∞ limit, both 
Eqs. (14) and (15) reduce to 𝑠̂ < 2𝑎, which matches the condition found 
in [3]. This bound has precisely the opposite sign compared to what 

3 Indeed, future directed motion implies 𝑣𝑡 = 𝑡̇ > 0. From the fact that, for 
spinning particles along the axis, 𝑝𝜇 ∥ 𝑣𝜇 , future directed particles also have 
𝑝𝑡 > 0, implying 𝑝𝑡 = 𝑔𝑡𝑡𝑝𝑡 < 0.

is necessary to overspin an extremal Kerr BH, i.e., 𝑠̂ > 2𝑎. The physi-
cal conclusion is, thus, that particles with dangerously high spins are 
not absorbed and that the WCCC is preserved for an extremal Kerr BH 
absorbing spinning particles.
Validity of the point particle approximation. Following the described pro-
cedure, however, could often lead to apparent WCCC violations [32]. 
Unlike point particles in geodesic motion, spinning particles require ad-
ditional restrictions to be considered point-like.

First, since objects cannot spin faster than the speed of light, they 
must have a minimum size 𝑟0 ≳ 𝑠∕𝑚. This can be understood from the 
approximate relation 𝑠 ∼ 𝑚𝑟0𝑣max, with 𝑣max the spinning velocity, 
constrained by 𝑣max < 1 [45]. Moreover, their motion is correctly 
described by the MPD equations as long as they are treated as point-like 

Fig. 2. Comparison, for the Kerr-dS case, between the upper bound on 𝑠̂∕𝐿
(light blue solid curve) allowing the particle to be captured by the BH, given 
by Eq. (14), the lower bound on 𝑠̂∕𝐿 (violet solid curve) required to destroy 
the event horizon, as indicated by Eq. (22), and the radius of the extremal BH 
Eq. (6) (black dashed curve), which determines the regime of validity of the 
point-particle approximation. All three quantities are plotted as functions of 
𝑎∕𝐿. Note that here 𝑎∕𝐿 is restricted to the range [0, 𝑎̃max], in accordance with 
the discussion in the main text. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison, for the Kerr-AdS case, between the upper bound on 𝑠̂∕𝐿
(light blue solid curve) allowing the particle to be captured by the BH, given 
by Eq. (15), the lower bound on 𝑠̂∕𝐿 (violet solid curve) required to destroy 
the event horizon, as indicated by Eq. (24), and the radius of the extremal BH 
Eq. (7) (black dashed curve), which determines the regime of validity of the 
point-particle approximation. 𝑎∕𝐿 is restricted to the range [0, 1) in accordance 
with the discussion in the main text. Note that in this case there is an overlap 
region where the particle can have sufficiently small spin to be captured by 
the BH but still have sufficiently large spin to destroy the event horizon. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 4. Blue shaded regions in the parameter space [𝑠∕(𝑚𝑟H), (𝑟inj − 𝑟H)∕𝑟H] (the normalized spin-to-mass ratio and the normalized initial distance of the particle from 
the horizon, respectively) represent those where the particle has 𝑠̂AdS1 ∕𝑟H > 𝑠̂∕𝑟H > 𝑠̂AdS2 ∕𝑟H and thus can be absorbed and spin the BH past extremality. Red shaded 
regions, instead, correspond to regions where the minimum size of the particle (given by 𝑠∕𝑚) is smaller than the distance from the horizon 𝑟inj − 𝑟H. As one can 
see, there is no overlap between the two regions, meaning that particles able to disrupt the horizon actually have a size bigger than the distance from the horizon 
itself (they are injected already inside the BH). For each plot, we fixed the value of 𝑎∕𝐿 (determining also the value of 𝑟H through Eq. (7) in the main text) and we 
restricted to particles with 𝑠∕𝑚 ≤ 0.2 𝑟H, starting (with zero velocity) from a radial distance from the horizon equal to 𝑟inj − 𝑟H ≥ 10−3 𝑟H. For 𝑠∕𝑚 = 0, one always has 
𝑠̂∕𝑟H < 𝑠̂AdS2 ∕𝑟H, consistent with no horizon disruption.

objects. This implies that 𝑟0 must be much smaller than the BH size, 
set, in our context, by the extremal horizon radius 𝑟H. The regime of 
interest is, thus, 𝑠∕𝑚 ≪ 𝑟H.

4.  Tests of the WCCC

We now consider an extremal Kerr-(A)dS background perturbed by 
the absorption of a spinning particle falling along the axis of rota-
tion. This perturbation induces a shift in the event horizon such that 
𝑟H → 𝑟H + 𝛿𝑟H (with 𝛿𝑟H ≪ 𝑟H). For the initial extremal configuration, 
𝑟H coincides with the location of the minimum of Δ𝑟, which we de-
note generically by 𝑟𝑚. Simultaneously, the mass and angular momen-
tum of the BH vary accordingly,  →  + 𝛿 and  →  + 𝛿 , with 
𝛿 ≪  and 𝛿 ≪   (or equivalently, in terms of the BH mass 𝑀
and spin parameter 𝑎, as 𝑀 → 𝑀 + 𝛿𝑀 and 𝑎 → 𝑎 + 𝛿𝑎). Here, 𝛿
and 𝛿  correspond to the energy 𝐸 and the intrinsic spin 𝑠 of the 
absorbed particle, respectively. This notation will be used henceforth. 
One then considers linear perturbations of the metric function induced 
by the absorption of the particle and evaluates the perturbed met-
ric function at its minimum. If the resulting value is non-positive, the 
WCCC is preserved; otherwise, capture of the particle disrupts the BH’s
horizon.

In our case, the metric function, evaluated at the minimum, 𝑟𝑚, reads
Δ𝑟(𝑟𝑚 + 𝛿𝑟,𝑀 + 𝛿𝑀, 𝑎 + 𝛿𝑎) = Δ𝑟(𝑟𝑚,𝑀, 𝑎) + 𝛿Δ𝑟 , (16)

where

𝛿Δ𝑟 = 𝜕𝑟Δ𝑟|𝑟𝑚𝛿𝑟 + 𝜕𝑀Δ𝑟|𝑟𝑚𝛿𝑀 + 𝜕𝑎Δ𝑟|𝑟𝑚𝛿𝑎 . (17)

At extremality, Δ𝑟(𝑟H, 𝑀, 𝑎) = 𝜕𝑟Δ𝑟|𝑟H = 0. Expressing (𝛿𝑀, 𝛿𝑎) as func-
tions of (𝐸, 𝑠) by inverting 

𝐸 = 𝜕
𝜕𝑎

𝛿𝑎 + 𝜕
𝜕𝑀

𝛿𝑀 , (18a)

𝑠 = 𝜕
𝜕𝑎

𝛿𝑎 + 𝜕
𝜕𝑀

𝛿𝑀 , (18b)

and using the explicit expressions for the charges Eq. (5) gives (we recall 
our conventions: upper and lower signs refer to Kerr-AdS and Kerr-dS, 
respectively) 

𝛿𝑎 =

(

𝐿2 ∓ 𝑎2
)2(𝑠 − 𝑎𝐸)

𝐿4𝑀
, (19a)

𝛿𝑀 =

(

𝐿2 ∓ 𝑎2
)[

𝐸
(

𝐿2 ± 3𝑎2
)

∓ 4𝑎𝑠
]

𝐿4
. (19b)

In the Kerr-dS case, plugging Eq. (19) into Eq. (17), together with Eq. (6) 
yields

𝛿Δ𝑟 =
2𝐸

√

𝐿2 − 𝑎2 − 𝛽−
(

𝑎2 + 𝐿2)

√

6𝐿4

[

3𝑎2−𝐿2−4𝑎𝑠̂ (20)

−
3𝑎𝐿2(𝑠̂ − 𝑎)

(

𝑎2 + 𝐿2)

2𝐿2 − 2𝑎2 + 𝛽−

(

1
𝐿2

+ 6
𝑎2 − 𝐿2 + 𝛽−

)]

.

The pre-factor in front of the square brackets is positive, so we 
can focus on the enclosed expression. Requiring 𝛿Δ𝑟 ≤ 0 (consistent 
with WCCC preservation) imposes another upper bound on 𝑠̂ (for
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convenience, we also define the dimensionless parameter 𝑎̃ = 𝑎∕𝐿)

𝑠̂ ≤𝐿
𝑎̃

[

11𝑎̃4 −
(

7𝛽−
𝐿2

+ 22
)

𝑎̃2 +
𝛽−
𝐿2

− 1
]

×
[

𝑎̃4 +
(

𝛽−
𝐿2

+ 22
)

𝑎̃2 −
7𝛽−
𝐿2

− 11
]−1

≡ 𝑠̂dS2 ,
(21)

which must be consistent with Eq. (14) to ensure both particle cap-
ture and horizon preservation. It turns out that 𝑠̂dS1 ≤ 𝑠̂dS2 . This can be 
explicitly confirmed by considering 𝑎̃

𝐿

(

𝑠̂dS2 − 𝑠̂dS1
)

, which has an abso-
lute minimum equal to zero at 𝑎̃ = 0, and monotonically increases for 
0 < 𝑎̃ < 𝑎̃max. Therefore, the condition 𝑠̂ < 𝑠̂dS1 , required for the particle 
to be captured by the BH, automatically implies the condition 𝑠̂ ≤ 𝑠̂dS2  to 
preserve its event horizon (see also Fig. 2).

Therefore, an extremal Kerr-dS BH cannot be overspun under the 
process considered.

For the Kerr-AdS metric, instead, plugging Eq. (19) into Eq. (17) and 
using Eq. (7) leads to

𝛿Δ𝑟 =
2𝐸

√

𝛽+ − 𝐿2 − 𝑎2(𝐿2 − 𝑎2)
√

6𝐿4

[

−3𝑎2 − 𝐿2

+ 4𝑎𝑠̂ + 6
𝑎(𝑠̂ − 𝑎)(𝐿2 − 𝑎2)(5𝐿2 − 𝑎2 + 𝛽+)

36𝑎2𝐿2 − (𝐿2 + 𝑎2 − 𝛽+)2

]

.

(22)

Since the pre-factor outside the square brackets is positive, we can again 
focus on the expression within. Requiring 𝛿Δ𝑟 ≤ 0 imposes again another 
upper bound on 𝑠̂:

𝑠̂ ≤ 𝐿
𝑎̃

[

11𝑎̃4 +
(7𝛽+

𝐿2
+ 22

)

𝑎̃2 +
𝛽+
𝐿2

− 1
]

×
[

−𝑎̃4 +
(

𝛽+
𝐿2

+ 22
)

𝑎̃2 +
7𝛽+
𝐿2

+ 11
]−1

≡ 𝑠̂AdS2 .
(23)

An inspection of 𝑠̂AdS1 − 𝑠̂AdS2  reveals that this function has an absolute 
minimum at 𝑎̃ = 0 and monotonically increases with 𝑎̃. Thus, contrary to 
the Kerr-dS case, in AdS one finds 𝑠̂AdS1 ≥ 𝑠̂AdS2 . This hints at a potential 
violation of the WCCC, since there is an overlap region in the parameter 
space where a spinning particle can be absorbed by the BH and overspin 
it. By numerically scanning the parameter space, we find that, as long as 
we consider particles with a sufficiently low spin-to-mass ratio to satisfy 
the point-particle approximation (𝑠∕𝑚 ≲ 0.1 𝑟H), and they are injected 
from a sufficiently large distance from the BH horizon (𝑟inj − 𝑟H ≳ 𝑟H, 
where 𝑟inj is the radius corresponding to an outer turning point at which 
𝑣𝑟 = 0), 𝑠̂∕𝑟H always remains below unity. In the parameter space, these 
particles live below the dashed black curve in Fig. 3 and are thus unable 
to spin the BH past extremality.

A natural question then arises regarding the fate of particles injected 
in the immediate vicinity of the BH. In this regime, the finite size of the 
particle should also be compared with the distance from the horizon. 
Specifically, it should satisfy 𝑟0 < 𝑟inj − 𝑟H. We find that particles with 
fine-tuned parameters capable of disrupting the horizon possess a size 
exceeding this bound, implying they were already inside the BH when 
they were injected.4 Conversely, particles smaller than 𝑟inj − 𝑟H are un-
able to disrupt the horizon, no matter how close from it they are injected 
(see the Appendix for further details).

5.  Conclusions and outlook

Our analysis extends the existing literature on testing the WCCC with 
spinning particles in asymptotically flat spacetimes by exploring anal-
ogous processes in the presence of a timelike boundary (AdS) and a 
cosmological horizon (dS). We find that an extremal Kerr-dS BH resists 
overspinning attempts via the absorption of spinning particles falling 
along its axis of rotation. Similar conclusions hold in the Kerr-AdS case, 

4 We thank J. Natário for pointing out this consideration.

although neglecting a careful evaluation of the point particle approxi-
mation would lead to the destruction of the horizon in finely tuned sce-
narios. These results are consistent with the findings of Ref. [15]. Con-
sidering different matter content and BH backgrounds, potential WCCC 
violations in AdS spacetimes have been suggested [24,25,49]. At any 
rate, our results for Kerr-AdS may offer further insights in holographic 
contexts [50–52].

These results also connect with broader considerations of geometric 
inequalities involving BH parameters. In asymptotically flat spacetimes, 
the WCCC is closely tied to the Penrose inequality, which relates a BH’s 
mass and horizon area [53]. A corresponding inequality has been con-
jectured for AdS spacetimes [54,55] or in dS (see, e.g., Ref. [56]). A 
recent proposal [57] presents a new class of inequalities for station-
ary asymptotically AdS BHs, relating their horizon area to other ther-
modynamic quantities. Our results, which highlight the importance of 
the point-particle approximation in the Kerr-AdS background, provide a 
framework to similarly test the WCCC using more general rotating BHs 
in AdS, including charges and/or matter fields, and offer a complemen-
tary perspective to the limits imposed by the inequalities put forward in 
Ref. [57].

Finally, our analysis lays the foundation for extending these ideas 
to rotating and accelerated BHs, which, in combination with the 
braneworld scenario, admit a holographic dual description in terms of 
quantum-corrected BHs [58]. In this framework, the injection of a spin-
ning particle in the bulk acquires a lower-dimensional interpretation on 
the brane, directly connecting with the results of Ref. [20].
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Appendix

In the following, we provide additional details concerning the cal-
culations supporting the main text’s conclusion that spinning particles 
moving along the axis of rotation of an extremal Kerr-AdS BH cannot 
overspin it, in the regime where the point particle approximation is 
valid.

We recall the setup considered: a particle of mass 𝑚 and intrinsic spin 
𝑠 falls along the axis of rotation from an outer turning point (at which 
𝑣𝑟 = 0) at a radial distance 𝑟inj from the event horizon 𝑟H. We imagine 
that the particle is ‘injected’ at that location, since the particle’s low 
energy level combined with the confining AdS potential do not allow the 
particle to come in from larger radii. We will not delve into its possible 
origin, but such a particle could be the product of a scattering process 
in the vicinity of the BH, for example.

Since for a spinning particle moving along 𝜃 = 0, the 4-momentum 
is parallel to 𝑣𝜇 (see the main text), we have also 𝑝𝑟 = 0 at the turn-
ing point. The timelike constraint 𝑝𝜇𝑝𝜇 = −𝑚2 in this situation, thus, 
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reduces to 𝑔𝑡𝑡
(

𝑝𝑡
)2 = −𝑚2. Evaluating the latter onto the axis of rota-

tion and at 𝑟 = 𝑟inj, considering future directed particles with 𝑝𝑡 < 0 and 
using Eq. (13) in the main text gives

𝐸
𝑚

=

√

√

√

√

Δ𝑟(𝑟inj)

𝑟2inj + 𝑎2
+ 𝑎 𝑠

𝑚

⎡

⎢

⎢

⎣

2𝑀𝑟
(𝑟2inj + 𝑎2)2

− 1
𝐿2

⎤

⎥

⎥

⎦

. (24)

Here, it is assumed that 𝑀 takes its extremal value (Eq. (7) in the main 
text). Since the AdS length 𝐿 can be scaled away and also the particle 
mass 𝑚 enters only through the ratios 𝐸∕𝑚 and 𝑠∕𝑚, we can compute 
the energy-to-mass ratio of the particle depending on 𝑟inj, 𝑠∕𝑚 and 𝑎. 
The spin-to-mass ratio 𝑠∕𝑚 is subjected to the point-particle constraint, 
i.e., 𝑠∕𝑚 ≪ 𝑟H, while we restrict also to 0 ≤ 𝑎∕𝐿 < 1.

The main idea is to employ Eq. (24) to evaluate
𝑠̂
𝑟H

= 𝑠
𝑚

⋅
𝑚

𝐸 𝑟H
, (25)

and use the fact that 𝐸 and 𝑚 are constants of motion. Then, when the 
above quantity is smaller than 1, we have automatically WCCC preser-
vation (according to Fig. 3 in the main text). If, instead, there are some 
particles that satisfy 𝑠̂∕𝑟H > 1, they live above the dashed line in Fig. 3 
and potentially can overspin the BH if they reach the overlapping region 
when 𝑠̂∕𝑟H > 𝑠̂AdS2 ∕𝑟H. A necessary condition for this to happen is that 
also 𝑠̂∕𝑟H < 𝑠̂AdS1 ∕𝑟H must hold, in order to ensure particle absorption by 
the BH.

We performed a numerical scan of the parameter space to assess 
whether such regions, where 𝑠̂∕𝑟H > 𝑠̂AdS2 ∕𝑟H, exist. We will consider 
particles with 𝑠∕𝑚 ≤ 0.2 𝑟H (so that the point-particle approximation, 
𝑠∕𝑚 ≪ 𝑟H, is satisfied). Fig. 4 reports, for different values of 𝑎∕𝐿, the 
regions in the parameter space where BH horizon disruption occurs. We 
have checked that 𝑠̂∕𝑟H < 𝑠̂AdS1 ∕𝑟H is always true in the parameter space 
considered, so all such particles are absorbed. However, since spinning 
particles possess a finite size, it is essential to compare this size with their 
initial distance from the event horizon 𝑟inj − 𝑟H. Specifically, the parti-
cle’s proper size must be smaller than this initial plunging distance. In 
Fig. 4, we highlight in red the regions of parameter space where the par-
ticle’s size —assumed to be the minimum possible, i.e., 𝑠∕𝑚— is smaller 
than its initial distance from the horizon. As evident from the figure, 
these regions do not overlap with those corresponding to particles capa-
ble of overspinning the BH (blue shaded region). This leads to the con-
clusion that particles seemingly able to violate the extremality bound 
would, in fact, have to be injected behind the horizon and are thus not 
relevant for the WCCC test.
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