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We investigate the weak cosmic censorship conjecture by analyzing the dynamics of spinning timelike particles
dropped along the rotational axis of an extremal Kerr-(anti-)de Sitter black hole. This idea was first considered in a
seminal paper by Wald and later by Needham but both analyses were restricted to asymptotically flat spacetimes.
We generalize these studies, involving spinning particles, to rotating spacetimes with non vanishing cosmological
constant. We examine whether the absorption of such particles can overspin the black hole beyond extremality,
potentially leading to the formation of a naked singularity. In asymptotically de Sitter spacetime, we find that
particles that are captured cannot overspin the black hole. Similar conclusions hold also with anti-de Sitter
asymptotics, but the analysis is more subtle, requiring careful consideration of the point particle approximation.

1. Introduction

The possible appearance of spacetime singularities in General Rela-
tivity, regions where Einstein’s field equations break down, poses an im-
portant problem in the deterministic evolution of the spacetime geome-
try [1]. To preserve the theory’s predictive power, it is crucial that such
singularities do not influence regions accessible to distant observers.
This is the core idea behind the weak cosmic censorship conjecture
(WCCQ), formulated by Penrose [2]. It posits that, under generic ini-
tial conditions and for physically reasonable matter, singularities aris-
ing from gravitational collapse are always hidden from view to distant
observers by an event horizon.

A definitive proof of WCCC remains elusive, prompting extensive
scrutiny in a variety of physical scenarios. One particularly compelling
approach involves assessing whether the event horizon of a black hole
(BH) can be destroyed by injecting test particles, a method pioneered by
Wald [3] for an extremal Kerr-Newman BH. This work was later gener-
alized by Sorce and Wald [4], who developed a formalism that includes
arbitrary matter distributions and accounts for backreaction effects at
quadratic order. Their analysis confirmed that the WCCC holds for both
extremal and nearly extremal Kerr-Newman BHs and provided a more
robust framework for probing the conjecture.

Realistic BHs, however, are not isolated objects in asymptotically
flat spacetime. Observations indicate that our universe is undergoing
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accelerated expansion, consistent with the presence of a positive cos-
mological constant and a de Sitter (dS) background [5-7]. Meanwhile,
asymptotically anti-de Sitter (AdS) spacetimes —characterized by a
negative cosmological constant— have become central to theoretical
physics due to their role in the gauge/gravity duality [8,9]. Thus,
understanding the fate of cosmic censorship in rotating BHs within
both dS and AdS backgrounds is of paramount importance. Various
studies have examined the conjecture in AdS settings under diverse
conditions [10-20], as well as in the Kerr-dS case [11,21-23], generally
finding that the WCCC remains intact!

In this letter, we generalize Wald’s original thought experiment to
assess whether spinning particles, dropped into an extremal Kerr-(A)dS
BH along its axis of rotation, can breach the extremality condition, ef-
fectively destroying the horizon and violating the WCCC. See Fig. 1
for a pictorial representation of the setup considered. Refs. [15,22]
proved more generally that extremal Kerr-Newman-(A)dS cannot be
overcharged/overspun with test fields obeying the null energy condi-
tion. Since physical spinning bodies —of which spinning particles can

! Nevertheless, exceptions have been reported: in particular, charged models
in AdS, have suggested that regions with arbitrarily large curvatures become
visible to boundary observers in certain fine-tuned configurations [24,25]. Ad-
ditionally, small Kerr-AdS suffer from the superradiant instability, which also
might impact the horizon stability and, thus, the WCCC [26-29].
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Fig. 1. Schematic representation of the setup considered. A point-like spinning
particle is injected and moves radially along the axis of rotation of an extremal
Kerr-(A)dS BH.

be considered a limiting case— should satisfy the dominant energy con-
dition [30], and that implies the null energy condition, the analysis we
present falls under the conditions of the theorems proved in [15,22].
Nevertheless, the specific calculation we perform is useful to compare
with similar tests in rotating BH backgrounds different from Kerr-(A)dS.

Despite the extensive exploration of the WCCC via test particles in
geodesic motion, studies involving spinning particles are scarce, and
have only been carried out in asymptotically flat spacetimes [3,31,32],
to the best of our knowledge. Additionally, the Sorce-Wald method has
not yet been applied to rotating and non-asymptotically flat BHs. Only
a handful of results exist in static charged models with a cosmological
constant [33-35].

This gap in the literature highlights the need for further investigation
in cosmologically/astrophysically relevant settings and with important
holographic implications.

2. Kerr-(A)dS metric

We consider the Kerr-(A)dS metric written in Boyer-Lindquist coor-
dinates (¢, r, 0, @) [36,37] (we adopt units in which ¢ =G = 1)

A 2 2 2 2
ds? = ——2’<dt— s 9d(p> + 2 a2+ 2 ge?
p = A, Ay

.2 2

sin“ 6 A 2 2

+—2"<adz-’ ta d<p> , o))
P =

with the metric functions defined as

A,:(r2+a2)<1i£—22>—2Mr, (2)
_a 2

A9=1+Ecos 0, 3)

2 _ 2, 2.2 = _d

p° =r"+a"cos 0, z:l+ﬁ, C))

where L is the (A)dS length related to the cosmological constant, while
M and a denote the BH’s mass and spin (per unit mass) parameters,
respectively. The factor E ensures the correct normalization of the an-
gular coordinate ¢ to 2, thereby eliminating conical deficits at the poles
0=0,x.

These spacetimes are solutions to the Einstein equations with a cos-
mological constant. Throughout this work, the upper (lower) sign refers
to the Kerr-AdS (Kerr-dS) case. The two metrics are related via the an-
alytic continuation L? — —L?. The Kerr spacetime is recovered in the
limit L2 - oco.

Physics Letters B 869 (2025) 139877

This family of geometries is characterized by two charges, their mass
and angular momentum, given respectively by [38-40]

M= M J= aM ' (5)

(1=2)" (1=4)

Let us now briefly discuss the causal structure of these spacetimes. Inde-
pendently of the sign of the cosmological constant there is a curvature
singularity at r = 0, corresponding to a ring on the equatorial plane. In
the Kerr-dS case the function A, can have at most three real roots, corre-
sponding to the inner horizon, r;, the event horizon, ry, and the cosmo-
logical horizon r¢, satisfying 0 < r; < riy < rc. While the cosmological
horizon is always present, the other two horizons may be absent, de-
pending on the choice of background parameters a and M. If these two
horizons are absent, the curvature singularity is naked. The threshold
separating shielded from naked singularities occurs when the event and
inner horizons are degenerate, corresponding to an extremal configu-
ration. Extremality is therefore defined by A,(ry) = Al(ry) = 0. This is
satisfied in the situation just described, i.e., r; = ry, or else in the Nariai
limit, in which ry = rc. As the latter does not represent a BH spacetime,
in this work we focus on the first possibility. The explicit extremality
conditions read:

L+ 2 _ g2~

M = THH , ry = # , 6)
where we defined, for brevity, g, = Va* + L* + 14a2L2. To ensure the
reality of the above expressions in the dS case, we must restrict the BH
spin parameter to the range 0 < a/L < d,,,,, With d,,,, =2 — /3 ~ 0.268
(which solves f_ = 0). In the Kerr-AdS case, instead, the spacetime may
exhibit two horizons (i.e., two real distinct roots of A,), no horizons
(corresponding to a naked singularity), or an extremal horizon, again
defined as before. The extremality condition, in this case, yields

272 _ 4
acL”—r p,—a®— L2
H +
PRttt G Skl i @)
L2ry H 6

Furthermore, we restrict the parametersto0 < a/L < 1, in order to avoid
divergences in the line element Eq. (1).2

In the limit L2 — o, both Egs. (6) and (7) reduce to rqy=M =a, as
expected, since the latter is the extremality condition for Kerr BHs.

3. Spinning test particles along the axis of rotation

The equations describing the motion of spinning test particles are
known as the Mathisson-Papapetrou-Dixon (MPD) equations [41-43]:

Dp+ 1
D_P/l = =5 R, 05", (8a)
Hv
Dgﬂ =pHo" = p'o*, (8b)
where R*, . is the Riemann tensor, 4 is an affine parameter along the

trajectory, D/DA = vV, is the directional covariant derivative, v* rep-
resents the 4-vector tangent to the trajectory while p# is the total 4-
momentum of the particle (of which we provide more details below),
and S* is the antisymmetric spin tensor representing the internal an-
gular momentum of the particle.

The dynamics described by Eq. (8a) is not closed. A supplementary
spin condition is typically imposed, fixing the center of the particle, thus
specifying its world line. We adopt one of the most widely used choices,
the Tulczyjew condition p, S#" = 0 [44]. It ensures that the intrinsic par-
ticle spin s, defined by

1
st = 35" Sy ©

2 The restriction to non-negative values for a/L is only a matter of convention.
Negative values can be considered by flipping the sign of a.
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is conserved, by virtue of Eq. (8b) (see also Ref. [45]). The right hand
side of Eq. (8a) describes the spin-curvature interaction [45,46]. The
test particle’s 4-momentum p* that allows to express the MPD equations
in the form Eq. (8a) is defined by

DSH¥

_—, 10
Y (10)

pr=mot —v
where m is the mass of the particle. It can be checked that m? = -p,p*
is also a conserved quantity [45,46].

In this letter, we perform WCCC tests considering the absorption of
spinning massive test particles falling along the BH’s rotation axis 6 = 0,
with the particle spin parallel to the axis (see Fig. 1). In this specific
setup, the tangent vector has components v# = (v, v", 0, 0), while the
only non-zero components of the spin tensor are Sy, = —S,,, (see also
Ref. [47]). From Eq. (10), the 4-momentum p* is parallel to v# in this
case, i.e., p* = mv* = (p', p’, 0, 0). To evaluate S°?, we employ the nor-
malization condition Eq. (9), which gives

Slo — S _ L 5

\€00800 sin@ 42 + 2
where in the second equality we performed a series expansion around
the axis of rotation = 0. Clearly, S diverges on the axis, but all scalar
invariants remain regular there.

In the following, we will consider future-directed particles, namely
those with p, < 0,% that are captured by the BH. To compute p,, we ex-
ploit time translation invariance of the spacetime and use the conserved
quantities along the motion of spinning particles, whose general expres-
sion reads as [48]

_a
<1+§>+(9(9), (11)

1 % 1 v
Qp = &p, = 55"V, 8, = &p, = 5"0,8,. a2

where the &’s are the Killing vectors 55) =6/ and fé‘@ = 8", related to
time-translation and rotational invariance, respectively. Q,)w, related
to the orbital angular momentum, is zero for spinning particles mov-
ing along the BH axis of rotation. The energy E of the particle, in-
stead, is associated with 5(’;) and can be written as —F = p, + %S"“’()ng,
or, explicitly,

13)

p,=—E+as|: 2Mr 1]

L
(a® + P2y L2
The condition p, < 0, thus, translates into an upper bound on the spin-
to-energy ratio § = s/E for a particle to be absorbed by the BH. In the
Kerr-dS case, imposing p, < 0 at the extremal horizon and using Eq. (6)
yields

L*(5a* + L* - f_)

6a (L2 + a?)

598, 14

Similarly, in the extremal Kerr-AdS case, one obtains, using Eq. (7),
L?(5a* - L* + B,)
6a(L2 —a?)

§ads (15)

To test the WCCC using the standard procedure, one considers in-
falling particles with normalized spins § saturating these bounds. Clearly
this is the case that has better chances of overspinning the BH. One then
analyzes the final geometry after the particle is absorbed (assuming the
perturbed BH settles down to a Kerr-(A)dS spacetime, and neglecting en-
ergy and angular momentum loss due to gravitational radiation). This
approach was employed by Wald [3] for an extremal Kerr BH and it
is instructive to do the comparison. Indeed, in the L?> — oo limit, both
Egs. (14) and (15) reduce to § < 2a, which matches the condition found
in [3]. This bound has precisely the opposite sign compared to what

3 Indeed, future directed motion implies v* = 7 > 0. From the fact that, for
spinning particles along the axis, p# || v¥, future directed particles also have
p' > 0, implying p, = g,p' <0.
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is necessary to overspin an extremal Kerr BH, i.e., § > 2a. The physi-
cal conclusion is, thus, that particles with dangerously high spins are
not absorbed and that the WCCC is preserved for an extremal Kerr BH
absorbing spinning particles.

Validity of the point particle approximation. Following the described pro-
cedure, however, could often lead to apparent WCCC violations [32].
Unlike point particles in geodesic motion, spinning particles require ad-
ditional restrictions to be considered point-like.

First, since objects cannot spin faster than the speed of light, they
must have a minimum size r(, > s/m. This can be understood from the
approximate relation s ~ mrvy,.,, with vy,, the spinning velocity,
constrained by v, <1 [45]. Moreover, their motion is correctly
described by the MPD equations as long as they are treated as point-like
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Fig. 2. Comparison, for the Kerr-dS case, between the upper bound on 3/L
(light blue solid curve) allowing the particle to be captured by the BH, given
by Eq. (14), the lower bound on §/L (violet solid curve) required to destroy
the event horizon, as indicated by Eq. (22), and the radius of the extremal BH
Eq. (6) (black dashed curve), which determines the regime of validity of the
point-particle approximation. All three quantities are plotted as functions of
a/L. Note that here a/L is restricted to the range [0, d,,,], in accordance with
the discussion in the main text. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Comparison, for the Kerr-AdS case, between the upper bound on §/L
(light blue solid curve) allowing the particle to be captured by the BH, given
by Eq. (15), the lower bound on §/L (violet solid curve) required to destroy
the event horizon, as indicated by Eq. (24), and the radius of the extremal BH
Eq. (7) (black dashed curve), which determines the regime of validity of the
point-particle approximation. a/L is restricted to the range [0, 1) in accordance
with the discussion in the main text. Note that in this case there is an overlap
region where the particle can have sufficiently small spin to be captured by
the BH but still have sufficiently large spin to destroy the event horizon. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Blue shaded regions in the parameter space [s/(mry), (ri,; — ry)/ry] (the normalized spin-to-mass ratio and the normalized initial distance of the particle from
the horizon, respectively) represent those where the particle has f‘l‘ds [ry > 8/ry > §§‘ds /ry and thus can be absorbed and spin the BH past extremality. Red shaded

regions, instead, correspond to regions where the minimum size of the particle (given by s/m) is smaller than the distance from the horizon Fin

— ry. As one can

see, there is no overlap between the two regions, meaning that particles able to disrupt the horizon actually have a size bigger than the distance from the horizon
itself (they are injected already inside the BH). For each plot, we fixed the value of a/L (determining also the value of ry through Eq. (7) in the main text) and we
restricted to particles with s/m < 0.2 ry, starting (with zero velocity) from a radial distance from the horizon equal to ryy; — ry > 1073 ry. For s/m = 0, one always has

8/ry < 349 /ry, consistent with no horizon disruption.

objects. This implies that r, must be much smaller than the BH size,
set, in our context, by the extremal horizon radius ry. The regime of
interest is, thus, s/m < ry.

4. Tests of the WCCC

We now consider an extremal Kerr-(A)dS background perturbed by
the absorption of a spinning particle falling along the axis of rota-
tion. This perturbation induces a shift in the event horizon such that
ry = rg + 6ry (with éry < ry). For the initial extremal configuration,
ry coincides with the location of the minimum of A,, which we de-
note generically by r,. Simultaneously, the mass and angular momen-
tum of the BH vary accordingly, M - M +6M and J — J +6J, with
SM < M and 6§J < J (or equivalently, in terms of the BH mass M
and spin parameter a, as M - M +6M and a — a+ 6a). Here, M
and 67 correspond to the energy E and the intrinsic spin s of the
absorbed particle, respectively. This notation will be used henceforth.
One then considers linear perturbations of the metric function induced
by the absorption of the particle and evaluates the perturbed met-
ric function at its minimum. If the resulting value is non-positive, the
WCCC is preserved; otherwise, capture of the particle disrupts the BH’s
horizon.

In our case, the metric function, evaluated at the minimum, r,,, reads

A(r, +6r,M +6M,a+6a) =A.(r,,M,a)+5A,, ae)
where
A, =0,A,1, 8r+0yA,l, M +0,A,l, a. 17)

At extremality, A, (ry, M, a) = 0,A,|,,, = 0. Expressing (6 M, a) as func-
tions of (E, s) by inverting

£= Mg,y My (18a)
da oM
_aJ 207
s = 3 da+ 0M5M’ (18b)

and using the explicit expressions for the charges Eq. (5) gives (we recall
our conventions: upper and lower signs refer to Kerr-AdS and Kerr-dS,
respectively)

(L2 F az)z(s —aFE)
LM
(L? ¥ a®) [E(L* + 3a%) F 4as]
4 ’

da = s (19a)

oM =

(19b)

In the Kerr-dS case, plugging Eq. (19) into Eq. (17), together with Eq. (6)
yields

_2EVL?-a>-p(a’+ L)
r \/6L4

3al’(8—a)(a® + L?) [ | 6
- —+——]-
202 -2a2+ (L2 a2—L2+ﬂ_)]

oA

[3a2—L2—4a§ (20)

The pre-factor in front of the square brackets is positive, so we
can focus on the enclosed expression. Requiring 6A, <0 (consistent
with WCCC preservation) imposes another upper bound on § (for
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convenience, we also define the dimensionless parameter d = a/L)

7
§g% 11a* - £+22 az+ﬁ—‘—1
a L? L?

7 -1
x[ﬁ4+<ﬂ—‘+22>62—£—11] =398,
L? L2 2

which must be consistent with Eq. (14) to ensure both particle cap-
ture and horizon preservation. It turns out that f‘]’S < §gs. This can be

(21)

explicitly confirmed by considering %(ﬁgs — §7%), which has an abso-
lute minimum equal to zero at @ = 0, and monotonically increases for
0 < @ < dp,y- Therefore, the condition § < §‘115, required for the particle
to be captured by the BH, automatically implies the condition § < 3‘55 to
preserve its event horizon (see also Fig. 2).

Therefore, an extremal Kerr-dS BH cannot be overspun under the
process considered.

For the Kerr-AdS metric, instead, plugging Eq. (19) into Eq. (17) and
using Eq. (7) leads to

oA

_2EVB -2 -’ -a) [_3a2 o
vers 22)
a(§ — a)(L?* — a®>)(5L* — a®> + B,)

+4a5+6
36a2L2 — (L2 + a® — f, )

Since the pre-factor outside the square brackets is positive, we can again
focus on the expression within. Requiring §A, < 0 imposes again another
upper bound on $:
7
11&4+< Py +22>&2+ﬂ—+—1
L2

§S%
a

e

— —

7 _ (23)
x[—a4+(ﬂ—++22>52+ﬂ+11] = §AdS
12 12 2

An inspection of §49S — $A4S reveals that this function has an absolute
minimum at @ = 0 and monotonically increases with a. Thus, contrary to
the Kerr-dS case, in AdS one finds §11\ds > %\ds. This hints at a potential
violation of the WCCC, since there is an overlap region in the parameter
space where a spinning particle can be absorbed by the BH and overspin
it. By numerically scanning the parameter space, we find that, as long as
we consider particles with a sufficiently low spin-to-mass ratio to satisfy
the point-particle approximation (s/m < 0.1ry), and they are injected
from a sufficiently large distance from the BH horizon (riy; — ry 2 ry,
where ryy; is the radius corresponding to an outer turning point at which
v" =0), §/ry always remains below unity. In the parameter space, these
particles live below the dashed black curve in Fig. 3 and are thus unable
to spin the BH past extremality.

A natural question then arises regarding the fate of particles injected
in the immediate vicinity of the BH. In this regime, the finite size of the
particle should also be compared with the distance from the horizon.
Specifically, it should satisfy r, < riy;j — ry. We find that particles with
fine-tuned parameters capable of disrupting the horizon possess a size
exceeding this bound, implying they were already inside the BH when
they were injected.* Conversely, particles smaller than Finj — 'y are un-
able to disrupt the horizon, no matter how close from it they are injected
(see the Appendix for further details).

5. Conclusions and outlook

Our analysis extends the existing literature on testing the WCCC with
spinning particles in asymptotically flat spacetimes by exploring anal-
ogous processes in the presence of a timelike boundary (AdS) and a
cosmological horizon (dS). We find that an extremal Kerr-dS BH resists
overspinning attempts via the absorption of spinning particles falling
along its axis of rotation. Similar conclusions hold in the Kerr-AdS case,

4 We thank J. Natério for pointing out this consideration.
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although neglecting a careful evaluation of the point particle approxi-
mation would lead to the destruction of the horizon in finely tuned sce-
narios. These results are consistent with the findings of Ref. [15]. Con-
sidering different matter content and BH backgrounds, potential WCCC
violations in AdS spacetimes have been suggested [24,25,49]. At any
rate, our results for Kerr-AdS may offer further insights in holographic
contexts [50-52].

These results also connect with broader considerations of geometric
inequalities involving BH parameters. In asymptotically flat spacetimes,
the WCCC is closely tied to the Penrose inequality, which relates a BH’s
mass and horizon area [53]. A corresponding inequality has been con-
jectured for AdS spacetimes [54,55] or in dS (see, e.g., Ref. [56]). A
recent proposal [57] presents a new class of inequalities for station-
ary asymptotically AdS BHs, relating their horizon area to other ther-
modynamic quantities. Our results, which highlight the importance of
the point-particle approximation in the Kerr-AdS background, provide a
framework to similarly test the WCCC using more general rotating BHs
in AdS, including charges and/or matter fields, and offer a complemen-
tary perspective to the limits imposed by the inequalities put forward in
Ref. [57].

Finally, our analysis lays the foundation for extending these ideas
to rotating and accelerated BHs, which, in combination with the
braneworld scenario, admit a holographic dual description in terms of
quantum-corrected BHs [58]. In this framework, the injection of a spin-
ning particle in the bulk acquires a lower-dimensional interpretation on
the brane, directly connecting with the results of Ref. [20].
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Appendix

In the following, we provide additional details concerning the cal-
culations supporting the main text’s conclusion that spinning particles
moving along the axis of rotation of an extremal Kerr-AdS BH cannot
overspin it, in the regime where the point particle approximation is
valid.

We recall the setup considered: a particle of mass m and intrinsic spin
s falls along the axis of rotation from an outer turning point (at which
v" = 0) at a radial distance rj,; from the event horizon ry. We imagine
that the particle is ‘injected’ at that location, since the particle’s low
energy level combined with the confining AdS potential do not allow the
particle to come in from larger radii. We will not delve into its possible
origin, but such a particle could be the product of a scattering process
in the vicinity of the BH, for example.

Since for a spinning particle moving along 6 = 0, the 4-momentum
is parallel to v# (see the main text), we have also p” =0 at the turn-
ing point. The timelike constraint p,p* = —m? in this situation, thus,


https://doi.org/10.13039/501100001871
https://doi.org/10.13039/501100001871

A.M. Frassino, J.V. Rocha and A.P. Sanna

reduces to g, (p' )2 = —m?. Evaluating the latter onto the axis of rota-
tion and at r = ryy;, considering future directed particles with p, < 0 and
using Eq. (13) in the main text gives

A, (rinj)
E_ 2_12 s ZZLrM _ Lz (24)
m T +a m (rinj +a?) L

Here, it is assumed that M takes its extremal value (Eq. (7) in the main
text). Since the AdS length L can be scaled away and also the particle
mass m enters only through the ratios E/m and s/m, we can compute
the energy-to-mass ratio of the particle depending on ryy;, s/m and a.
The spin-to-mass ratio s/m is subjected to the point-particle constraint,
i.e., s/m < ry, while we restrict also to 0 < a/L < 1.
The main idea is to employ Eq. (24) to evaluate
S _s m

=2. , 25
g m Eryg 25

and use the fact that E and m are constants of motion. Then, when the
above quantity is smaller than 1, we have automatically WCCC preser-
vation (according to Fig. 3 in the main text). If, instead, there are some
particles that satisfy §/ry > 1, they live above the dashed line in Fig. 3
and potentially can overspin the BH if they reach the overlapping region
when §/ry > §12\ds /ru- A necessary condition for this to happen is that
also §/ry < &’l*ds /ry must hold, in order to ensure particle absorption by
the BH.

We performed a numerical scan of the parameter space to assess
whether such regions, where §/ry > §’2*ds /ru,> exist. We will consider
particles with s/m <0.2ry (so that the point-particle approximation,
s/m < ry, is satisfied). Fig. 4 reports, for different values of a/L, the
regions in the parameter space where BH horizon disruption occurs. We
have checked that §/ry < §‘l‘ds /ry is always true in the parameter space
considered, so all such particles are absorbed. However, since spinning
particles possess a finite size, it is essential to compare this size with their
initial distance from the event horizon ry; — ry. Specifically, the parti-
cle’s proper size must be smaller than this initial plunging distance. In
Fig. 4, we highlight in red the regions of parameter space where the par-
ticle’s size —assumed to be the minimum possible, i.e., s/m— is smaller
than its initial distance from the horizon. As evident from the figure,
these regions do not overlap with those corresponding to particles capa-
ble of overspinning the BH (blue shaded region). This leads to the con-
clusion that particles seemingly able to violate the extremality bound
would, in fact, have to be injected behind the horizon and are thus not
relevant for the WCCC test.
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