Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/16047
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarvalho, J. P.-
dc.contributor.authorRosa, H.-
dc.contributor.authorBatista, F.-
dc.date.accessioned2018-06-08T08:34:29Z-
dc.date.available2018-06-08T08:34:29Z-
dc.date.issued2017-
dc.identifier10.1109/FUZZ-IEEE.2017.8015635en_US
dc.identifier.isbn978-1-5090-6034-4-
dc.identifier.issn1098-7584-
dc.identifier.urihttps://ciencia.iscte-iul.pt/id/ci-pub-38411-
dc.identifier.urihttp://hdl.handle.net/10071/16047-
dc.description.abstractIn this paper we propose to approach the subject of detecting relevant tweets when in the presence of very large tweet collections containing a large number of different trending topics. We use a large database of tweets collected during the 2011 London Riots as a case study to demonstrate the application of the proposed techniques. In order to extract relevant content, we extend, formalize and apply a recent technique, called Twitter Topic Fuzzy Fingerprints, which, in the scope of social media, outperforms other well known text based classification methods, while being less computationally demanding, an essential feature when processing large volumes of streaming data. Using this technique we were able to detect 45% additional relevant tweets within the database.por
dc.language.isoengpor
dc.publisherIEEEpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147282/PT-
dc.rightsopenAccesspor
dc.subjectTwitterpor
dc.subjectFingerprint recognitionpor
dc.subjectMarket researchpor
dc.subjectTaggingpor
dc.subjectLibrariespor
dc.subjectElectronic mailpor
dc.subjectDatabasespor
dc.titleDetecting relevant tweets in very large tweet collections: the London Riots case studypor
dc.typeconferenceObjecten_US
dc.event.title2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017por
dc.event.typeConferênciapor
dc.publicationstatusPublicadopor
dc.peerreviewedyespor
dc.journal2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017en_US
degois.publication.locationNaplespor
degois.publication.title2017 IEEE International Conference on Fuzzy Systems, FUZZ 2017por
dc.date.updated2018-06-08T08:33:33Z-
dc.identifier.doi10.1109/FUZZ-IEEE.2017.8015635-
Appears in Collections:CTI-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
Carvalho 2017a - Detecting relevant tweets in very large tweet collections the London Riots case study.pdfPós-print275,51 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.