Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/18189
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrigueiros, D.-
dc.date.accessioned2019-06-07T10:11:32Z-
dc.date.available2019-06-07T10:11:32Z-
dc.date.issued2019-
dc.identifier.issn0967-5426-
dc.identifier.urihttp://hdl.handle.net/10071/18189-
dc.description.abstractFinancial ratios are routinely used as predictors in modelling tasks where accounting information is required. The purpose of this paper is to discuss such use, showing how to improve the effectiveness of ratio-based models. First, the paper exposes the inadequacies of ratios when used as multivariate predictors and then develops a theoretical foundation and methodology to build accounting-based models. From plausible assumptions about the cross-sectional behaviour of accounting data, the paper shows that the effect of size, which ratios remove, can also be removed by modelling algorithms, which facilitates the discovery of meaningful predictors and leads to markedly more effective models. Experiments verify that the new methodology outperforms the conventional methodology, the need to select ratios among many alternatives is avoided, and model construction is less arbitrary. The new methodology can end the uncritical use of modelling remedies currently prevailing and release the full relevance of accounting information when utilised to support investments and other value-bearing decisions.eng
dc.language.isoeng-
dc.publisherEmerald-
dc.relation044/2014/A1-
dc.relationUID/MULTI/0446/2013-
dc.rightsopenAccess-
dc.subjectFinancial ratioseng
dc.subjectAccounting-based modelseng
dc.subjectMultivariate modelseng
dc.subjectPredictive modelseng
dc.subjectValue-relevance of accounting informationeng
dc.titleImproving the effectiveness of predictors in accounting-based modelseng
dc.typearticle-
dc.pagination207 - 226-
dc.peerreviewedyes-
dc.journalJournal of Applied Accounting Research-
dc.volume20-
dc.number2-
degois.publication.firstPage207-
degois.publication.lastPage226-
degois.publication.issue2-
degois.publication.titleImproving the effectiveness of predictors in accounting-based modelseng
dc.date.updated2019-06-07T11:10:57Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1108/JAAR-01-2018-0006-
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-60278-
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
2019_Improving_the_effectiveness_of_predictors_in_accounting-based_models.pdfPós-print364,83 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.