Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/20235
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNunes, Luís Miguel Martins-
dc.contributor.advisorSilva, Nuno Pinho da-
dc.contributor.authorJanuário, João Filipe Ferreira-
dc.date.accessioned2020-03-27T11:04:02Z-
dc.date.available2020-03-27T11:04:02Z-
dc.date.issued2019-11-04-
dc.date.submitted2019-01-
dc.identifier.citationJanuário, J. F. F. (2019). Electricity price forecasting utilizing machine learning in MIBEL [Dissertação de mestrado, Iscte - Instituto Universitário de Lisboa]. Repositório Iscte. http://hdl.handle.net/10071/20235pt-PT
dc.identifier.urihttp://hdl.handle.net/10071/20235-
dc.description.abstractShort term electricity price forecasts have become increasingly important in the last few decades due to the rise of more competitive electricity markets throughout the globe. Accurate forecasts are now essential for market players to maximize their profits and hedge against risk, hence various forecasting methodologies have been applied to electricity price forecasting in the last few decades. This dissertation explores the main methodologies and how accurately can three popular machine learning models, SVR LSTM and XGBoost, predict prices in the Iberian market of electricity. Additionally, a study on input variables and their relationship with the final price is made.por
dc.language.isoengpor
dc.rightsopenAccesspor
dc.subjectMachine learningpor
dc.subjectElectricitypor
dc.subjectClearing marketpor
dc.subjectPredictionpor
dc.subjectInput variablespor
dc.subjectEletricidade-
dc.subjectPreços-
dc.subjectMétodos de previsão-
dc.titleElectricity price forecasting utilizing machine learning in MIBELpor
dc.typemasterThesispor
dc.peerreviewedyespor
dc.identifier.tid202460177por
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
thesis.degree.nameMestrado em Engenharia Informáticapor
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
master_joao_ferreira_januario.pdf2,4 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.