Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/20401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLaureano, R. D.-
dc.date.accessioned2020-04-22T10:55:11Z-
dc.date.available2020-04-22T10:55:11Z-
dc.date.issued2020-
dc.identifier.issn2073-8994-
dc.identifier.urihttp://hdl.handle.net/10071/20401-
dc.description.abstractIt is presented and proved a version of Livschitz Theorem for hyperbolic flows pragmatically oriented to the cohomological context. Previously, it is introduced the concept of cocycle and a natural notion of symmetry for cocycles. It is discussed the fundamental relationship between the existence of solutions of cohomological equations and the behavior of the cocycles along periodic orbits. The generalization of this theorem to a class of suspension flows is also discussed and proved. This generalization allows giving a different proof of the Livschitz Theorem for flows based on the construction of Markov systems for hyperbolic flows.eng
dc.language.isoeng-
dc.publisherMDPI-
dc.rightsopenAccess-
dc.subjectCocycleseng
dc.subjectCohomological equationseng
dc.subjectAnosov Closing Lemmaeng
dc.subjectHyperbolic flowseng
dc.subjectLivschitz Theoremeng
dc.subjectMarkov systemseng
dc.subjectSuspension flowseng
dc.titleLivschitz Theorem in suspension flows and Markov systems: approach in cohomology of systemseng
dc.typearticle-
dc.peerreviewedyes-
dc.journalSymmetry-
dc.volume12-
dc.number3-
degois.publication.issue3-
degois.publication.titleLivschitz Theorem in suspension flows and Markov systems: approach in cohomology of systemseng
dc.date.updated2020-04-22T11:53:42Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3390/sym12030338-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-70451-
iscte.alternateIdentifiers.scopus2-s2.0-85082049220-
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
symmetry-12-00338publicado.pdfVersão Editora265,46 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.