Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/23659
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHamad, M.-
dc.contributor.authorConti, C.-
dc.contributor.authorAlmeida, A. M. de.-
dc.contributor.authorNunes, P.-
dc.contributor.authorSoares, L. D.-
dc.date.accessioned2021-12-07T12:17:52Z-
dc.date.available2021-12-07T12:17:52Z-
dc.date.issued2021-
dc.identifier.isbn978-1-6654-1588-0-
dc.identifier.urihttp://hdl.handle.net/10071/23659-
dc.description.abstractEfficient segmentation is a fundamental problem in computer vision and image processing. Achieving accurate segmentation for 4D light field images is a challenging task due to the huge amount of data involved and the intrinsic redundancy in this type of images. While automatic image segmentation is usually challenging, and because regions of interest are different for different users or tasks, this paper proposes an improved semi-supervised segmentation approach for 4D light field images based on an efficient graph structure and user's scribbles. The recent view-consistent 4D light field superpixels algorithm proposed by Khan et al. is used as an automatic pre-processing step to ensure spatio-angular consistency and to represent the image graph efficiently. Then, segmentation is achieved via graph-cut optimization. Experimental results for synthetic and real light field images indicate that the proposed approach can extract objects consistently across views, and thus it can be used in applications such as augmented reality applications or object-based coding with few user interactions.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationUIDB/50008/2020-
dc.rightsopenAccess-
dc.subjectLight field segmentationeng
dc.subjectForeground-background segmentationeng
dc.subjectSuperpixelseng
dc.subjectGraph-cuteng
dc.subjectSemi-supervised segmentationeng
dc.titleSLFS: Semi-supervised light-field foreground-background segmentationeng
dc.typeconferenceObject-
dc.event.title2021 Telecoms Conference, ConfTELE 2021-
dc.event.typeConferênciapt
dc.event.locationLeiriaeng
dc.event.date2021-
dc.peerreviewedyes-
dc.journal2021 Telecoms Conference (ConfTELE)-
degois.publication.locationLeiriaeng
degois.publication.titleSLFS: Semi-supervised light-field foreground-background segmentationeng
dc.date.updated2022-02-12T16:33:48Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/ConfTELE50222.2021.9435461-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-82263-
iscte.alternateIdentifiers.scopus2-s2.0-85107726850-
Appears in Collections:ISTAR-CRI - Comunicações a conferências internacionais
IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_82263.pdfVersão Aceite19,07 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.