Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/25096
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVicente, M.-
dc.contributor.authorBatista, F.-
dc.contributor.authorCarvalho, J.-
dc.contributor.editorAdnan Yazici, Nikhil R. Pal, Uzat Kaymak-
dc.date.accessioned2022-04-08T09:09:34Z-
dc.date.available2022-04-08T09:09:34Z-
dc.date.issued2015-
dc.identifier.isbn978-1-4673-7428-6-
dc.identifier.issn1544-5615-
dc.identifier.urihttp://hdl.handle.net/10071/25096-
dc.description.abstractThis paper describes an approach to automatically detect the gender of Twitter users, based only on clues provided by their profile information in an unstructured form. A number of features that capture phenomena specific of Twitter users is proposed and evaluated on a dataset of about 242K English language users. Different supervised and unsupervised approaches are used to assess the performance of the proposed features, including Naive Bayes variants, Logistic Regression, Support Vector Machines, Fuzzy c-Means clustering, and K-means. An unsupervised approach based on Fuzzy c-Means proved to be very suitable for this task, returning the correct gender for about 96% of the users.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FCEC%2F50021%2F2013/PT-
dc.rightsopenAccess-
dc.subjectTwittereng
dc.subjectGender detectioneng
dc.subjectFuzzy c-meanseng
dc.subjectSupervised and unsupervised methodseng
dc.titleTwitter gender classification using user unstructured informationeng
dc.typeconferenceObject-
dc.event.typeConferênciapt
dc.event.locationIstambuleng
dc.event.date2015-
dc.peerreviewedyes-
dc.journalIEEE International Fuzzy Systems conference proceedings-
degois.publication.locationIstambuleng
degois.publication.titleTwitter gender classification using user unstructured informationeng
dc.date.updated2022-04-08T10:04:53Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/FUZZ-IEEE.2015.7338102-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Físicaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-24678-
iscte.alternateIdentifiers.scopus2-s2.0-84975745653-
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_24678.pdfVersão Aceite139,68 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.