Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/28846
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkhari, H.-
dc.contributor.authorViana, J.-
dc.contributor.authorSebastião, P.-
dc.contributor.authorBernardo, L.-
dc.contributor.authorKahvazadeh, S.-
dc.contributor.authorDinis, R.-
dc.date.accessioned2023-06-30T10:41:28Z-
dc.date.available2023-06-30T10:41:28Z-
dc.date.issued2023-
dc.identifier.citationFarkhari, H., Viana, J., Sebastião, P., Bernardo, L., Kahvazadeh, S., & Dinis, R. (2023). Accurate and reliable methods for 5G UAV jamming identification with calibrated uncertainty. In RCIS: The 17th International Conference on Research Challenges in Information Science. http://hdl.handle.net/10071/28846-
dc.identifier.issn1613-0073-
dc.identifier.urihttp://hdl.handle.net/10071/28846-
dc.description.abstractThis research highlights the negative impact of ignoring uncertainty on DNN decision-making and Reliability. Proposed combined preprocessing and post-processing methods enhance DNN accuracy and Reliability in time-series binary classification for 5G UAV security dataset, employing ML algorithms and confidence values. Several metrics are used to evaluate the proposed hybrid algorithms. The study emphasizes the XGB classifier's unreliability and suggests the proposed methods' potential superiority over the DNN softmax layer. Furthermore, improved uncertainty calibration based on the Reliability Score metric minimizes the difference between Mean Confidence and Accuracy, enhancing accuracy and Reliability.eng
dc.language.isoeng-
dc.publisherCEUR-WS-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/813391/EU-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.relation.ispartofRCIS: The 17th International Conference on Research Challenges in Information Science-
dc.rightsopenAccess-
dc.subjectUnmanned Aerial Vehicleeng
dc.subjectDeep neural networkseng
dc.subjectCalibrationeng
dc.subjectUncertaintyeng
dc.subjectReliabilityeng
dc.subjectJamming identificationeng
dc.subject5Geng
dc.subject6Geng
dc.titleAccurate and reliable methods for 5G UAV jamming identification with calibrated uncertaintyeng
dc.typeconferenceObject-
dc.event.title17th International Conference on Research Challenges in Information Science-
dc.event.typeConferênciapt
dc.event.locationCorfu, Greeceeng
dc.event.date2023-
dc.peerreviewedyes-
dc.date.updated2024-06-26T13:01:12Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-96444-
iscte.alternateIdentifiers.scopus2-s2.0-85182023112-
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File SizeFormat 
conferenceobject_96444.pdf678,34 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.