Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/29306
Full metadata record
DC FieldValueLanguage
dc.contributor.authorViana, J.-
dc.contributor.authorFarkhari, H.-
dc.contributor.authorSebastião, P.-
dc.contributor.authorCampos, L. M.-
dc.contributor.authorKoutlia, K.-
dc.contributor.authorBojovic, B.-
dc.contributor.authorLagén S.-
dc.contributor.authorDinis, R.-
dc.date.accessioned2023-09-11T13:23:02Z-
dc.date.available2023-09-11T13:23:02Z-
dc.date.issued2024-
dc.identifier.citationViana, J., Farkhari, H., Sebastião, P., Campos, L. M., Koutlia, K., Bojovic, B., Lagén S., & Dinis, R. (2024). Deep attention recognition for attack identification in 5G UAV scenarios: Novel architecture and end-to-end evaluation. IEEE Transactions on Vehicular Technology, 76(1), 131-146. https://doi.org/10.1109/TVT.2023.3302814-
dc.identifier.issn0018-9545-
dc.identifier.urihttp://hdl.handle.net/10071/29306-
dc.description.abstractDespite the robust security features inherent in the 5G framework, attackers will still discover ways to disrupt 5G unmanned aerial vehicle (UAV) operations and decrease UAV control communication performance in Air-to-Ground (A2G) links. Operating under the assumption that the 5G UAV communications infrastructure will never be entirely secure, we propose Deep Attention Recognition (DAtR) as a solution to identify attacks based on a small deep network embedded in authenticated UAVs. Our proposed solution uses two observable parameters: the Signal to Interference plus Noise Ratio (SINR) and the Received Signal Strength Indicator (RSSI) to recognize attacks under Line-of-Sight (LoS), Non-Line-of-Sight (NLoS), and a probabilistic combination of the two conditions. Several attackers are located in random positions in the tested scenarios, while their power varies between simulations. Moreover, terrestrial users are included in the network to impose additional complexity on attack detection. Additionally to the application and deep network architecture, our work innovates by mixing both observable parameters inside DAtR and adding two new pre-processing and post-processing techniques embedded in the deep network results to improve accuracy. We compare several performance parameters in our proposed Deep Network. For example, the impact of Long Short-Term-Memory (LSTM) and Attention layers in terms of their overall accuracy, the window size effect, and test the accuracy when only partial data is available in the training process. Finally, we benchmark our deep network with six widely used classifiers regarding classification accuracy. The eXtreme Gradient Boosting (XGB) outperforms all other algorithms in the deep network, for instance, the three top scoring algorithms: Random Forest (RF), CatBoost (CAT), and XGB obtain mean accuracy of 83.24 \%, 85.60 \%, and 86.33\% in LoS conditions, respectively. When compared to XGB, our algorithm improves accuracy by more than 4\% in the LoS condition (90.80\% with Method 2) and by around 3\% in the short-distance NLoS condition (83.07\% with Method 1).eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/813391/EU-
dc.relation2021 SGR 00770-
dc.relationPID2021-126431OB-I00-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT-
dc.rightsopenAccess-
dc.subjectSecurityeng
dc.subjectConvolutional neural networkseng
dc.subjectDeep learningeng
dc.subjectJamming detectioneng
dc.subjectJamming identificationeng
dc.subjectUAVeng
dc.subjectUnmanned Aerial Vehicleseng
dc.subject4Geng
dc.subject5Geng
dc.titleDeep attention recognition for attack identification in 5G UAV scenarios: Novel architecture and end-to-end evaluationeng
dc.typearticle-
dc.pagination131 - 146-
dc.peerreviewedyes-
dc.volume76-
dc.number1-
dc.date.updated2024-02-16T20:46:45Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/TVT.2023.3302814-
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-96443-
iscte.alternateIdentifiers.scopus2-s2.0-85167841335-
iscte.journalIEEE Transactions on Vehicular Technology-
Appears in Collections:IT-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_96443.pdf10,02 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.