Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/31309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJamba, N. T.-
dc.contributor.authorJacinto, G.-
dc.contributor.authorFilipe, P. A.-
dc.contributor.authorBraumann, C. A.-
dc.date.accessioned2024-03-11T15:33:39Z-
dc.date.available2024-03-11T15:33:39Z-
dc.date.issued2024-
dc.identifier.citationJamba, N. T., Jacinto, G., Filipe, P. A., & Braumann, C. A. (2024). Estimation for stochastic differential equation mixed models using approximation methods. AIMS Mathematics, 9(4), 7866-7894. https://dx.doi.org/10.3934/math.2024383-
dc.identifier.issn2473-6988-
dc.identifier.urihttp://hdl.handle.net/10071/31309-
dc.description.abstractWe used a class of stochastic differential equations (SDE) to model the evolution of cattle weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimization issues for this class of models. However, to incorporate individual characteristics of the animals, the average transformed size at maturity parameter ? and/or the growth parameter ? may vary randomly from animal to animal, which results in SDE mixed models. Obtaining a closed-form expression for the likelihood function to apply the maximum likelihood estimation method is a difficult, sometimes impossible, task. We compared the known Laplace approximation method with the delta method to approximate the integrals involved in the likelihood function. These approaches were adapted to allow the estimation of the parameters even when the requirement of most existing methods, namely having the same age vector of observations for all trajectories, fails, as it did in our real data example. Simulation studies were also performed to assess the performance of these approximation methods. The results show that the approximation methods under study are a very good alternative for the estimation of SDE mixed models.eng
dc.language.isoeng-
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)-
dc.relationUID/MAT/04674/2020-
dc.rightsopenAccess-
dc.subjectDelta methodeng
dc.subjectLaplace methodeng
dc.subjectMaximum likelihood estimationeng
dc.subjectMixed modelseng
dc.subjectStochastic differential equationseng
dc.titleEstimation for stochastic differential equation mixed models using approximation methodseng
dc.typearticle-
dc.pagination7866 - 7894-
dc.peerreviewedyes-
dc.volume9-
dc.number4-
dc.date.updated2024-03-11T15:33:07Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3934/math.2024383-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-102870-
iscte.alternateIdentifiers.scopus2-s2.0-85185906420-
iscte.journalAIMS Mathematics-
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_102870.pdf364,15 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.