Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/31702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, M. A. M.-
dc.contributor.editorAlbert R. Baswell-
dc.date.accessioned2024-05-15T10:26:21Z-
dc.date.available2024-05-15T10:26:21Z-
dc.date.issued2023-
dc.identifier.citationFerreira, M. A. M. (2023). The study of maintenance costs of non-autonomous pension funds through a diffusion process. In A. R. Baswell (Eds.). Advances in mathematics research (pp. 293-305). Nova Science Publishers. http://hdl.handle.net/10071/31702-
dc.identifier.isbn979-8-88697-879-1-
dc.identifier.urihttp://hdl.handle.net/10071/31702-
dc.description.abstractThe case of certain pensions funds that are not auto financed, and are systematically maintained with an outside financing effort, is considered in this work. As a representation of the unrestricted reserves value process of this kind of funds, a time homogeneous diffusion process with finite expected time to ruin is proposed. Then it is admitted a financial tool that regenerates the diffusion at some level with positive value, every time the diffusion hits a barrier at the origin. So, the financing effort can be modeled as a renewal-reward process if the regeneration level is kept constant. The evaluation of the perpetual maintenance cost expected values and of the finite time maintenance cost are studied. Also, we present an application of this approach when the unrestricted reserves value process behaves as a generalized Brownian motion process.eng
dc.language.isoeng-
dc.publisherNova Science Publishers-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relation.ispartofAdvances in mathematics research-
dc.rightsopenAccess-
dc.subjectPensions fundeng
dc.subjectDiffusion processeng
dc.subjectFirst passage timeseng
dc.subjectPerpetuityeng
dc.subjectRenewal equationeng
dc.titleThe study of maintenance costs of non-autonomous pension funds through a diffusion processeng
dc.typebookPart-
dc.event.locationNew Yorkeng
dc.pagination293 - 305-
dc.peerreviewedyes-
dc.volume33-
dc.date.updated2024-05-13T10:32:21Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
iscte.subject.odsErradicar a pobrezapor
iscte.subject.odsTrabalho digno e crescimento económicopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-96797-
Appears in Collections:ISTAR-CLI - Capítulos de livros internacionais

Files in This Item:
File SizeFormat 
bookPart_96797.pdf333,36 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.