Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/34418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFernandes, E.-
dc.contributor.authorMoro, S.-
dc.contributor.authorCortez, P.-
dc.date.accessioned2025-05-14T11:34:45Z-
dc.date.available2025-05-14T11:34:45Z-
dc.date.issued2024-
dc.identifier.citationFernandes, E., Moro, S. & Cortez, P. (2024). Towards a news recommendation system to increase reader engagement through newsletter content personalization. Procedia Computer Science, 239, 217-225. https://doi.org/10.1016/j.procs.2024.06.165.-
dc.identifier.issn1877-0509-
dc.identifier.urihttp://hdl.handle.net/10071/34418-
dc.description.abstractIn the big data era, recommendation systems (RS) play a pivotal role to overcome information overload. In the digital landscape publishers need to optimize their editorial strategies to increase reader engagement and digital revenue. Newsletters emerged as an important conversion channel to engage readers as they provide a personalized experience by building habits. However, the lack of human resources and the need for more content assertiveness per reader lead publishers to search for an advanced analytics solution. We address this problem by proposing a research agenda on news recommendation algorithms inspired in the table d’hôte approach and the concept of ‘personalized diversity’. Thus, the reader receives a personalized newsletter where he can discover informative and surprising content. The goal is to offer a self-contained package that retains readers, increases loyalty and consequently, the propensity to subscribe. A live controlled experiment with readers from the Portuguese newspaper Público was performed and a new approach is proposed. We study the effects of content recommendations on the behavior of newsletter subscribers. Findings reveal that serendipitous content tends to increase reader engagement. Finally, we propose a table d’hôte approach and new challenges are identified for future research.eng
dc.language.isoeng-
dc.publisherElsevier BV-
dc.relationUIDB/04466/2020-
dc.relationUIDB/00319/2020-
dc.relationUIDP/04466/2020-
dc.rightsopenAccess-
dc.subjectData scienceeng
dc.subjectDigital journalismeng
dc.subjectNews recommendationeng
dc.subjectNewsletterseng
dc.subjectPersonalizationeng
dc.titleTowards a news recommendation system to increase reader engagement through newsletter content personalizationeng
dc.typearticle-
dc.pagination217 - 225-
dc.peerreviewedyes-
dc.volume239-
dc.date.updated2025-05-14T12:33:54Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1016/j.procs.2024.06.165-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-110676-
iscte.alternateIdentifiers.scopus2-s2.0-85201295542-
iscte.journalProcedia Computer Science-
Appears in Collections:ISTAR-AC - Atas de congresso/Proceedings (organização, edição literária, ...)

Files in This Item:
File SizeFormat 
article_110676791,77 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.