Utilize este identificador para referenciar este registo: http://hdl.handle.net/10071/35701
Registo completo
Campo DCValorIdioma
dc.contributor.authorMcCarthy, C.-
dc.contributor.authorPhillips, S.-
dc.contributor.authorSternberg, T.-
dc.contributor.authorYadamsuren, A.-
dc.contributor.authorNasanbat, B.-
dc.contributor.authorShaney, K.-
dc.contributor.authorHoshino, B.-
dc.contributor.authorEnkhjargal, E.-
dc.date.accessioned2025-12-09T12:09:11Z-
dc.date.available2025-12-09T12:09:11Z-
dc.date.issued2025-
dc.identifier.citationMcCarthy, C., Phillips, S., Sternberg, T., Yadamsuren, A., Nasanbat, B., Shaney, K., Hoshino, B., & Enkhjargal, E. (2025). Can artificial intelligence support Bactrian camel conservation? Testing machine learning on aerial imagery in Mongolia’s Gobi Desert. Environmental Conservation, 52(3), 149-156. https://doi.org/10.1017/S0376892925100118-
dc.identifier.issn0376-8929-
dc.identifier.urihttp://hdl.handle.net/10071/35701-
dc.description.abstractMonitoring wildlife populations in vast, remote landscapes poses significant challenges for conservation and management, particularly when studying elusive species that range across inaccessible terrain. Traditional survey methods often prove impractical or insufficient in such environments, necessitating innovative technological solutions. This study evaluates the effectiveness of deep learning for automated Bactrian camel detection in drone imagery across the complex desert terrain of the Gobi Desert of Mongolia. Using YOLOv8 and a dataset of 1479 high-resolution drone-captured images of Bactrian camels, we developed and validated an automated detection system. Our model demonstrated strong detection performance with high precision and recall values across different environmental conditions. Scale-aware analysis revealed distinct performance patterns between medium- and small-scale detections, informing optimal drone flight parameters. The system maintained consistent processing efficiency across various batch sizes while preserving detection quality. These findings advance conservation monitoring capabilities for Bactrian camels and other wildlife in remote ecosystems, providing wildlife managers with an efficient tool to track population dynamics and inform conservation strategies in expansive, difficult-to-access habitats.eng
dc.language.isoeng-
dc.publisherCambridge University Press-
dc.rightsopenAccess-
dc.subjectArtificial intelligenceeng
dc.subjectCamelseng
dc.subjectConservation monitoringeng
dc.subjectDeep learningeng
dc.subjectDesert ecosystemseng
dc.subjectDrone technologyeng
dc.subjectGobi Deserteng
dc.subjectMachine learningeng
dc.subjectWildlife surveillanceeng
dc.subjectYOLOv8eng
dc.titleCan artificial intelligence support Bactrian camel conservation? Testing machine learning on aerial imagery in Mongolia’s Gobi Deserteng
dc.typearticle-
dc.pagination149 - 156-
dc.peerreviewedyes-
dc.volume52-
dc.number3-
dc.date.updated2025-12-09T12:12:27Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1017/S0376892925100118-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Terra e do Ambientepor
dc.subject.fosDomínio/Área Científica::Ciências Agrárias::Ciências Veterináriaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-114101-
iscte.alternateIdentifiers.scopus2-s2.0-105011029371-
iscte.journalEnvironmental Conservation-
Aparece nas coleções:CEI-RI - Artigos em revista científica internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro TamanhoFormato 
article_114101.pdf1,25 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.