Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/35701
Author(s): McCarthy, C.
Phillips, S.
Sternberg, T.
Yadamsuren, A.
Nasanbat, B.
Shaney, K.
Hoshino, B.
Enkhjargal, E.
Date: 2025
Title: Can artificial intelligence support Bactrian camel conservation? Testing machine learning on aerial imagery in Mongolia’s Gobi Desert
Journal title: Environmental Conservation
Volume: 52
Number: 3
Pages: 149 - 156
Reference: McCarthy, C., Phillips, S., Sternberg, T., Yadamsuren, A., Nasanbat, B., Shaney, K., Hoshino, B., & Enkhjargal, E. (2025). Can artificial intelligence support Bactrian camel conservation? Testing machine learning on aerial imagery in Mongolia’s Gobi Desert. Environmental Conservation, 52(3), 149-156. https://doi.org/10.1017/S0376892925100118
ISSN: 0376-8929
DOI (Digital Object Identifier): 10.1017/S0376892925100118
Keywords: Artificial intelligence
Camels
Conservation monitoring
Deep learning
Desert ecosystems
Drone technology
Gobi Desert
Machine learning
Wildlife surveillance
YOLOv8
Abstract: Monitoring wildlife populations in vast, remote landscapes poses significant challenges for conservation and management, particularly when studying elusive species that range across inaccessible terrain. Traditional survey methods often prove impractical or insufficient in such environments, necessitating innovative technological solutions. This study evaluates the effectiveness of deep learning for automated Bactrian camel detection in drone imagery across the complex desert terrain of the Gobi Desert of Mongolia. Using YOLOv8 and a dataset of 1479 high-resolution drone-captured images of Bactrian camels, we developed and validated an automated detection system. Our model demonstrated strong detection performance with high precision and recall values across different environmental conditions. Scale-aware analysis revealed distinct performance patterns between medium- and small-scale detections, informing optimal drone flight parameters. The system maintained consistent processing efficiency across various batch sizes while preserving detection quality. These findings advance conservation monitoring capabilities for Bactrian camels and other wildlife in remote ecosystems, providing wildlife managers with an efficient tool to track population dynamics and inform conservation strategies in expansive, difficult-to-access habitats.
Peerreviewed: yes
Access type: Open Access
Appears in Collections:CEI-RI - Artigos em revista científica internacional com arbitragem científica

Files in This Item:
File SizeFormat 
article_114101.pdf1,25 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.